Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Biomater ; 186: 30-62, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128796

RESUMO

Recent interest in tissue engineering (TE) has focused on electrically conductive biomaterials. This has been inspired by the characteristics of the cells' microenvironment where signalling is supported by electrical stimulation. Numerous studies have demonstrated the positive influence of electrical stimulation on cell excitation to proliferate, differentiate, and deposit extracellular matrix. Even without external electrical stimulation, research shows that electrically active scaffolds can improve tissue regeneration capacity. Tissues like bone, muscle, and neural contain electrically excitable cells that respond to electrical cues provided by implanted biomaterials. To introduce an electrical pathway, TE scaffolds can incorporate conductive polymers, metallic nanoparticles, and ceramic nanostructures. However, these materials often do not meet implantation criteria, such as maintaining mechanical durability and degradation characteristics, making them unsuitable as scaffold matrices. Instead, depositing conductive layers on TE scaffolds has shown promise as an efficient alternative to creating electrically conductive structures. A stratified scaffold with an electroactive surface synergistically excites the cells through active top-pathway, with/without electrical stimulation, providing an ideal matrix for cell growth, proliferation, and tissue deposition. Additionally, these conductive coatings can be enriched with bioactive or pharmaceutical components to enhance the scaffold's biomedical performance. This review covers recent developments in electrically active biomedical coatings for TE. The physicochemical and biological properties of conductive coating materials, including polymers (polypyrrole, polyaniline and PEDOT:PSS), metallic nanoparticles (gold, silver) and inorganic (ceramic) particles (carbon nanotubes, graphene-based materials and Mxenes) are examined. Each section explores the conductive coatings' deposition techniques, deposition parameters, conductivity ranges, deposit morphology, cell responses, and toxicity levels in detail. Furthermore, the applications of these conductive layers, primarily in bone, muscle, and neural TE are considered, and findings from in vitro and in vivo investigations are presented. STATEMENT OF SIGNIFICANCE: Tissue engineering (TE) scaffolds are crucial for human tissue replacement and acceleration of healing. Neural, muscle, bone, and skin tissues have electrically excitable cells, and their regeneration can be enhanced by electrically conductive scaffolds. However, standalone conductive materials often fall short for TE applications. An effective approach involves coating scaffolds with a conductive layer, finely tuning surface properties while leveraging the scaffold's innate biological and physical support. Further enhancement is achieved by modifying the conductive layer with pharmaceutical components. This review explores the under-reviewed topic of conductive coatings in tissue engineering, introducing conductive biomaterial coatings and analyzing their biological interactions. It provides insights into enhancing scaffold functionality for tissue regeneration, bridging a critical gap in current literature.


Assuntos
Materiais Revestidos Biocompatíveis , Condutividade Elétrica , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais , Alicerces Teciduais/química , Polímeros/química
2.
J Stomatol Oral Maxillofac Surg ; 125(3): 101680, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37951501

RESUMO

BACKGROUND: Laser application for the treatment of peri­implantitis provides a variety of advantages; however, depending on the laser type and parameters, it may also have adverse effects on the implant surface qualities. This study's objective is to assess the effects of laser type and parameters on the surface properties of two different titanium-based implant materials: titanium Grade 4 (Ti-Grade 4) and titanium zirconium (Ti-Zr) discs with sand-blasted and acid-etched (SLA) surfaces under in vitro conditions. MATERIAL & METHOD: Sand-blasted and acid-etched discs made of titanium grade 4 (Ti-Grade 4) and titanium zirconium (Ti-Zr) were treated using 808 nm AlGaAs (diode) and 2940 nm Er:YAG lasers with varying parameters (i.e., diode laser in continuous wave mode, Er:YAG in short pulse mode, and Er:YAG in variable square pulse mode with four different doses). Then, the surface morphology and topography of the treated discs were characterized using scanning electron microscopy and optical profilometry. RESULTS: The 3D surface topographies of discs treated with a high power Er:YAG laser displayed irregular peaks and deep valleys, indicating surface deterioration. The average surface roughness values (Sa) of both discs varied with laser type and parameters (3.55-4.80 µm for Ti-Grade 4 versus 3.25-4.5 µm for Ti-Zr). With diode laser applications, the topography features of the discs were preserved despite a small number of irregular valleys and peaks. However, the surface morphologies of the discs were dramatically altered by erosion and local melting because of the Er:YAG laser treatment. CONCLUSION: Diode laser application appears to be the most reliable method for treating peri­implantitis, as diode laser-treated implants retained their overall surface quality despite a small number of irregular peaks and valleys.

3.
J Biomed Mater Res B Appl Biomater ; 108(6): 2513-2527, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32052943

RESUMO

In this study, it was aimed to produce electrostatically induced polyetheretherketone (PEEK) and strontium substituted hydroxyapatite (SrHA) composites. SrHA nanoparticles (5 and 10 vol%) were introduced in the PEEK matrix to increase its mechanical properties and osseointegration. In order to disperse and homogeneously distribute the nanoparticles within the matrix, an electrostatic bond was developed between the PEEK and nanoparticles by wet processing through the attraction of the oppositely charged particles. Particles were pressed and sintered according to the Taguchi Design of experiments (DoE) array. The effects of SrHA reinforcement, sintering temperature and time on the density, crystallinity and crystallite sizes were determined with density test, DSC and XRD, respectively. The disks were also analyzed via SEM, FTIR, compression, microhardness, and nanoindentation tests and were immersed into the simulated body fluid (SBF). The composites produced from electrostatically induced powders presented a homogenous microstructure as SEM analysis illustrated the homogenous dispersion and distribution of the SrHA nanoparticles. The SrHA nanoparticles decreased the relative density and crystallinity of the composite, whereas, the rise in the sintering temperature and time enhanced the relative density, according to the DoE results. SrHA reinforcement improved the reduced modulus and nanoindentation hardness of the PEEK (348.47 MPa, 5.97 GPa) to 392.02 MPa and 6.65 GPa, respectively. SrHA promoted the bioactivity of the composite: an apatite layer covered the surface of PEEK/10SrHA composite after 14 days incubation. These promising results suggest that the electrostatically bonded composite powders would be used to produce homogenous PEEK based bioactive composites.


Assuntos
Benzofenonas/química , Materiais Biocompatíveis , Resinas Compostas/química , Durapatita/química , Polímeros/química , Eletricidade Estática , Líquidos Corporais , Varredura Diferencial de Calorimetria , Dureza , Hidroxiapatitas , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Nanopartículas , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio , Difração de Raios X
4.
J Biomed Mater Res A ; 106(12): 3111-3122, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216664

RESUMO

In this study, chitosan/bioactive glass (BG)/lawsone coatings were deposited by electrophoretic deposition (EPD) on polyetheretherketone (PEEK)/BG layers (previously deposited by EPD on 316-L stainless steel) to produce bioactive and antibacterial coatings. First, the EPD of chitosan/BG/lawsone was optimized on stainless steel in terms of suspension stability, homogeneity and thickness of coatings. Subsequently, the optimized EPD parameters were used to produce bioresorbable chitosan/bioactive glass (BG)/lawsone coatings on PEEK/BG layers. The produced layered coatings were characterized in terms of composition, microstructure, corrosion resistance, in vitro bioactivity, drug release kinetics and antibacterial activity. Ultraviolet/Visible (UV/VIS) spectroscopic analyses confirmed the release of lawsone from the coatings. Moreover, the deposition of chitosan/BG coatings was confirmed by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR). The coated specimens presented higher corrosion resistance (10 times) in comparison to that of bare 316-L stainless steel and showed convenient wettability for initial protein attachment. The presence of lawsone in the top layer provided antibacterial effects against Staphylococcus carnosus. Moreover, the developed coatings formed apatite-like crystals upon immersion in simulated body fluid, indicating the possibility of achieving close interaction between the coating surface and bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3111-3122, 2018.


Assuntos
Antibacterianos/administração & dosagem , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Cetonas/química , Naftoquinonas/administração & dosagem , Polietilenoglicóis/química , Antibacterianos/química , Antibacterianos/farmacologia , Benzofenonas , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Naftoquinonas/química , Naftoquinonas/farmacologia , Polímeros , Infecções Estafilocócicas/prevenção & controle , Staphylococcus/efeitos dos fármacos , Molhabilidade
5.
ACS Appl Mater Interfaces ; 9(38): 32489-32497, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28857546

RESUMO

Bioactive and antibacterial coatings on stainless steel substrates were developed and characterized in this study. Silver nanocluster-silica composite coatings of 60-150 nm thickness were deposited using radio frequency (RF) co-sputtering on PEEK/bioactive glass (BG) layers (of 80-90 µm thickness) which had been electrophoretically deposited onto stainless steel. Two sputtering conditions were used by varying the deposition time (15 and 40 min); the resulting microstructure, composition, adhesion strength, in vitro bioactivity, and antibacterial activity were investigated. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDX) confirmed the presence of silver nanoclusters, which were homogeneously embedded in the silica matrix. The isoelectric point of the coatings and their charge at physiological pH were determined by zeta potential measurements. The presence of BG particles in the PEEK/BG layer allows the coatings to form apatite-like crystals upon immersion in simulated body fluid (SBF). Moreover, silver nanoclusters embedded in the silica matrix as a top layer provided an antibacterial effect against Escherichia coli and Staphylococcus carnosus.


Assuntos
Nanoestruturas , Antibacterianos , Benzofenonas , Materiais Revestidos Biocompatíveis , Vidro , Cetonas , Microscopia Eletrônica de Varredura , Polietilenoglicóis , Polímeros , Dióxido de Silício , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA