Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 13(2): e0003922, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35323039

RESUMO

The female reproductive tract (FRT) is a complex environment, rich in mucin glycoproteins that form a dense network on the surface of the underlying epithelia. Group B Streptococcus (GBS) asymptomatically colonizes 25-30% of healthy women, but during pregnancy can cause ascending infection in utero or be transmitted to the newborn during birth to cause invasive disease. Though the cervicovaginal mucosa is a natural site for GBS colonization, the specific interactions between GBS and mucins remain unknown. Here we demonstrate for the first time that MUC5B interacts directly with GBS and promotes barrier function by inhibiting both bacterial attachment to human epithelial cells and ascension from the vagina to the uterus in a murine model of GBS colonization. RNA sequencing analysis of GBS exposed to MUC5B identified 128 differentially expressed GBS genes, including upregulation of the pilus island-2b (PI-2b) locus. We subsequently show that PI-2b is important for GBS attachment to reproductive cells, binding to immobilized mucins, and vaginal colonization in vivo. Our results suggest that while MUC5B plays an important role in host defense, GBS upregulates pili in response to mucins to help promote persistence within the vaginal tract, illustrating the dynamic interplay between pathogen and host. IMPORTANCE Mucin glycoproteins are a major component that contributes to the complexity of the female reproductive tract (FRT). Group B Streptococcus (GBS) is present in the FRT of 25-30% of healthy women, but during pregnancy can ascend to the uterus to cause preterm birth and fetal infection in utero. Here we show that a prominent mucin found in the FRT, MUC5B, promotes host defense by inhibiting GBS interaction with epithelial cells found in the FRT and ascension from the vagina to the uterus in vivo. In response to MUC5B, GBS induces the expression of surface expressed pili, which in turn contributes to GBS persistence within the vaginal lumen. These observations highlight the importance and complexity of GBS-mucin interactions that warrant further investigation.


Assuntos
Nascimento Prematuro , Infecções Estreptocócicas , Animais , Feminino , Humanos , Recém-Nascido , Camundongos , Mucina-5B/metabolismo , Mucinas/metabolismo , Gravidez , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/metabolismo , Vagina/microbiologia
2.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34279219

RESUMO

The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.


Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , África , Antimaláricos/farmacologia , Ásia , Camboja , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Epidemiologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA