Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 54(6): 1154-1167.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33979578

RESUMO

Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1+ classical dendritic cells (cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and Sting. TIM-3 blockade increased uptake of extracellular DNA by cDC1 through an endocytic process that resulted in cytoplasmic localization. DNA uptake and efficacy of TIM-3 blockade required DNA binding by HMGB1, while galectin-9-induced cell surface clustering of TIM-3 was necessary for its suppressive function. Human peripheral blood cDC1s also took up extracellular DNA upon TIM-3 blockade. Thus, TIM-3 regulates endocytosis of extracellular DNA and activation of the cytoplasmic DNA sensing cGAS-STING pathway in cDC1s, with implications for understanding the mechanisms underlying TIM-3 immunotherapy.


Assuntos
DNA/metabolismo , Células Dendríticas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citoplasma/metabolismo , Endocitose/fisiologia , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL
2.
Exp Dermatol ; 32(10): 1624-1632, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350109

RESUMO

The gut microbiome is increasingly recognized to alter cancer risk, progression and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonisation by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing and tumour burden by periodic tumour measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced the tumour burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.


Assuntos
Carcinoma de Células Escamosas , Microbioma Gastrointestinal , Imunoterapia , Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Antibacterianos/uso terapêutico , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Imunoterapia/métodos , Melanoma/terapia , Microbiota , RNA Ribossômico 16S/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Raios Ultravioleta , Microbioma Gastrointestinal/imunologia
3.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747869

RESUMO

The gut microbiome is increasingly recognized to alter cancer risk, progression, and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonization by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing, and tumor burden by periodic tumor measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced tumor burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA