RESUMO
The positioning of chromosomes in the nucleus of a eukaryotic cell is highly organized and has a complex and dynamic relationship with gene expression. In the human malaria parasite Plasmodium falciparum, the clustering of a family of virulence genes correlates with their coordinated silencing and has a strong influence on the overall organization of the genome. To identify conserved and species-specific principles of genome organization, we performed Hi-C experiments and generated 3D genome models for five Plasmodium species and two related apicomplexan parasites. Plasmodium species mainly showed clustering of centromeres, telomeres, and virulence genes. In P. falciparum, the heterochromatic virulence gene cluster had a strong repressive effect on the surrounding nuclear space, while this was less pronounced in Plasmodium vivax and Plasmodium berghei, and absent in Plasmodium yoelii In Plasmodium knowlesi, telomeres and virulence genes were more dispersed throughout the nucleus, but its 3D genome showed a strong correlation with gene expression. The Babesia microti genome showed a classical Rabl organization with colocalization of subtelomeric virulence genes, while the Toxoplasma gondii genome was dominated by clustering of the centromeres and lacked virulence gene clustering. Collectively, our results demonstrate that spatial genome organization in most Plasmodium species is constrained by the colocalization of virulence genes. P. falciparum and P. knowlesi, the only two Plasmodium species with gene families involved in antigenic variation, are unique in the effect of these genes on chromosome folding, indicating a potential link between genome organization and gene expression in more virulent pathogens.
Assuntos
Genoma de Protozoário/genética , Heterocromatina/genética , Malária Falciparum/genética , Plasmodium falciparum/genética , Animais , Centrômero/genética , Regulação da Expressão Gênica/genética , Genômica , Humanos , Malária Falciparum/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidade , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Telômero/genética , Toxoplasma/genética , Toxoplasma/patogenicidadeRESUMO
The chromosomes within the eukaryotic cell nucleus are highly dynamic and adopt complex hierarchical structures. Understanding how this three-dimensional (3D) nuclear architectureaffects gene regulation, cell cycle progression and disease pathogenesis are important biological questions in development and disease. Recently, many genome-wide technologies including chromosome conformation capture (3C) and 3C-based methodologies (4C, 5C, and Hi-C) have been developed to investigate 3D chromatin structure. In this review, we introduce 3D genome methodologies, with a focus on their application for understanding the nuclear architecture of the human malaria parasite, Plasmodium falciparum. An increasing amount of evidence now suggests that gene regulation in the parasite is largely regulated by epigenetic mechanisms and nuclear reorganization. Here, we explore the 3D genome architecture of P. falciparum, including local and global chromatin structure. In addition, molecular components important for maintaining 3D chromatin organization including architectural proteins and long non-coding RNAs are discussed. Collectively, these studies contribute to our understanding of how the plasticity of 3D genome architecture regulates gene expression and cell cycle progression in this deadly parasite.
Assuntos
Cromatina/genética , Genoma de Protozoário/genética , Malária/genética , Plasmodium falciparum/genética , Animais , Cromatina/química , Cromatina/metabolismo , Humanos , Malária/metabolismo , Plasmodium falciparum/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Gene expression in Plasmodium falciparum is tightly regulated to ensure successful propagation of the parasite throughout its complex life cycle. The earliest transcriptomics studies in P. falciparum suggested a cascade of transcriptional activity over the course of the 48-hour intraerythrocytic developmental cycle (IDC); however, the just-in-time transcriptional model has recently been challenged by findings that show the importance of post-transcriptional regulation. To further explore the role of transcriptional regulation, we performed the first genome-wide nascent RNA profiling in P. falciparum. Our findings indicate that the majority of genes are transcribed simultaneously during the trophozoite stage of the IDC and that only a small subset of genes is subject to differential transcriptional timing. RNA polymerase II is engaged with promoter regions prior to this transcriptional burst, suggesting that Pol II pausing plays a dominant role in gene regulation. In addition, we found that the overall transcriptional program during gametocyte differentiation is surprisingly similar to the IDC, with the exception of relatively small subsets of genes. Results from this study suggest that further characterization of the molecular players that regulate stage-specific gene expression and Pol II pausing will contribute to our continuous search for novel antimalarial drug targets.
Assuntos
Genes de Protozoários , Plasmodium falciparum/genética , RNA de Protozoário/genética , Animais , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/metabolismo , Análise de Sequência de RNA , Transcrição GênicaRESUMO
Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.
RESUMO
The complex life cycle of Plasmodium falciparum requires coordinated gene expression regulation to allow host cell invasion, transmission, and immune evasion. Increasing evidence now suggests a major role for epigenetic mechanisms in gene expression in the parasite. In eukaryotes, many lncRNAs have been identified to be pivotal regulators of genome structure and gene expression. To investigate the regulatory roles of lncRNAs in P. falciparum we explore the intergenic lncRNA distribution in nuclear and cytoplasmic subcellular locations. Using nascent RNA expression profiles, we identify a total of 1768 lncRNAs, of which 718 (~41%) are novels in P. falciparum. The subcellular localization and stage-specific expression of several putative lncRNAs are validated using RNA-FISH. Additionally, the genome-wide occupancy of several candidate nuclear lncRNAs is explored using ChIRP. The results reveal that lncRNA occupancy sites are focal and sequence-specific with a particular enrichment for several parasite-specific gene families, including those involved in pathogenesis and sexual differentiation. Genomic and phenotypic analysis of one specific lncRNA demonstrate its importance in sexual differentiation and reproduction. Our findings bring a new level of insight into the role of lncRNAs in pathogenicity, gene regulation and sexual differentiation, opening new avenues for targeted therapeutic strategies against the deadly malaria parasite.
Assuntos
Malária Falciparum , Malária , Parasitos , RNA Longo não Codificante , Humanos , Animais , Plasmodium falciparum/genética , RNA Longo não Codificante/genética , Malária Falciparum/genéticaRESUMO
Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.
Assuntos
Babesia , Babesiose , Carrapatos , Animais , Humanos , Camundongos , Babesia/genética , Babesiose/tratamento farmacológico , Multiômica , Eritrócitos/parasitologiaRESUMO
Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.
Assuntos
Malária , Proteína 1 de Superfície de Merozoito , Adulto , Animais , Anticorpos Antiprotozoários , Formação de Anticorpos , Criança , Humanos , Imunoglobulina G , Imunoglobulina M/metabolismo , Células B de Memória , Merozoítos , Plasmodium falciparum , Receptores de Antígenos de Linfócitos B/metabolismo , UgandaRESUMO
Naturally acquired iummunity against clinical malaria is slow to develop, taking years of repeated exposure to parasites to acquire sufficiently broad and potent antibody responses. Increasing evidence suggests that Plasmodium infection and the resulting immune stimulation contribute to changes in the B cell compartment. In particular, accumulation of atypical memory B cells (atMBCs) is common in Plasmodium-exposed individuals. Similarities to B cell subsets present in other acute and chronic disease settings have provided insight into the development and potential function of these cells; however, their contribution to protection against malaria is still poorly understood. Here, we discuss recent findings that have increased our understanding of atMBCs and outline outstanding questions related to their function and development in the protective immune response to malaria.
Assuntos
Linfócitos B/imunologia , Memória Imunológica , Malária , Plasmodium , Anticorpos Antiprotozoários , Humanos , Malária/imunologiaRESUMO
Malaria remains a significant contributor to the global burden of disease, with around 40% of the world's population at risk of Plasmodium infections. The development of an effective vaccine against the malaria parasite would mark a breakthrough in the fight to eradicate the disease. Over time, natural infection elicits a robust immune response against the blood stage of the parasite, providing protection against malaria. In recent years, we have gained valuable insight into the mechanisms by which IgG acts to prevent pathology and inhibit parasite replication, as well as the potential role of immunoglobulin M (IgM) in these processes. Here, we discuss recent advances in our understanding of the mechanisms, acquisition, and maintenance of naturally acquired immunity, and the relevance of these discoveries for the development of a potential vaccine against the blood stage of Plasmodium falciparum.
Assuntos
Anticorpos Antiprotozoários/imunologia , Imunidade Humoral , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , HumanosRESUMO
Proteins interacting with DNA are fundamental for mediating processes such as gene expression, DNA replication and maintenance of genome integrity. Accumulating evidence suggests that the chromatin of apicomplexan parasites, such as Plasmodium falciparum, is highly organized, and this structure provides an epigenetic mechanism for transcriptional regulation. To investigate how parasite chromatin structure is being regulated, we undertook comparative genomics analysis using 12 distinct eukaryotic genomes. We identified conserved and parasite-specific chromatin-associated domains (CADs) and proteins (CAPs). We then used the chromatin enrichment for proteomics (ChEP) approach to experimentally capture CAPs in P. falciparum. A topological scoring analysis of the proteomics dataset revealed stage-specific enrichments of CADs and CAPs. Finally, we characterized, two candidate CAPs: a conserved homologue of the structural maintenance of chromosome 3 protein and a homologue of the crowded-like nuclei protein, a plant-like protein functionally analogous to animal nuclear lamina proteins. Collectively, our results provide a comprehensive overview of CAPs in apicomplexans, and contribute to our understanding of the complex molecular components regulating chromatin structure and genome architecture in these deadly parasites.
Assuntos
Cromatina/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Genoma de Protozoário , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica , Proteoma/genética , Proteínas de Protozoários/genéticaRESUMO
Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.
Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Parasitos/patogenicidade , Plasmodium/patogenicidade , Animais , Proliferação de CélulasRESUMO
The development of malaria parasites throughout their various life cycle stages is coordinated by changes in gene expression. We previously showed that the three-dimensional organization of the Plasmodium falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyze genome organization in the P. falciparum and P. vivax transmission stages. Major changes occur in the localization and interactions of genes involved in pathogenesis and immune evasion, host cell invasion, sexual differentiation, and master regulation of gene expression. Furthermore, we observe reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Our results suggest that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycle.
Assuntos
Genoma de Protozoário , Malária Falciparum/parasitologia , Família Multigênica , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Anopheles/parasitologia , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Estágios do Ciclo de Vida , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismoRESUMO
The human malaria parasite, Plasmodium falciparum, depends on a coordinated regulation of gene expression for development and propagation within the human host. Recent developments suggest that gene regulation in the parasite is largely controlled by epigenetic mechanisms. Here, we discuss recent advancements contributing to our understanding of the mechanisms controlling gene regulation in the parasite, including nucleosome landscape, histone modifications, and nuclear architecture. In addition, various processes involved in regulation of parasite-specific genes and gene families are examined. Finally, we address the use of epigenetic processes as targets for novel antimalarial therapies. Collectively, these topics highlight the unique biology of P. falciparum, and contribute to our understanding of mechanisms regulating gene expression in this deadly parasite.
Assuntos
Cromatina/química , Cromatina/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Sistemas de Liberação de Medicamentos , Epigênese Genética/genética , Humanos , Malária Falciparum/tratamento farmacológicoRESUMO
BACKGROUND: Gene expression is controlled at multiple levels, including transcription, stability, translation, and degradation. Over the years, it has become apparent that Plasmodium falciparum exerts limited transcriptional control of gene expression, while at least part of Plasmodium's genome is controlled by post-transcriptional mechanisms. To generate insights into the mechanisms that regulate gene expression at the post-transcriptional level, we undertook complementary computational, comparative genomics, and experimental approaches to identify and characterize mRNA-binding proteins (mRBPs) in P. falciparum. RESULTS: Close to 1000 RNA-binding proteins are identified by hidden Markov model searches, of which mRBPs encompass a relatively large proportion of the parasite proteome as compared to other eukaryotes. Several abundant mRNA-binding domains are enriched in apicomplexan parasites, while strong depletion of mRNA-binding domains involved in RNA degradation is observed. Next, we experimentally capture 199 proteins that interact with mRNA during the blood stages, 64 of which with high confidence. These captured mRBPs show a significant overlap with the in silico identified candidate RBPs (p < 0.0001). Among the experimentally validated mRBPs are many known translational regulators active in other stages of the parasite's life cycle, such as DOZI, CITH, PfCELF2, Musashi, and PfAlba1-4. Finally, we also detect several proteins with an RNA-binding domain abundant in Apicomplexans (RAP domain) that is almost exclusively found in apicomplexan parasites. CONCLUSIONS: Collectively, our results provide the most complete comparative genomics and experimental analysis of mRBPs in P. falciparum. A better understanding of these regulatory proteins will not only give insight into the intricate parasite life cycle but may also provide targets for novel therapeutic strategies.