Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pathogens ; 13(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38251369

RESUMO

Single-cell RNA sequencing (scRNA-seq) technologies are instrumental to improving our understanding of virus-host interactions in cell culture infection studies and complex biological systems because they allow separating the transcriptional signatures of infected versus non-infected bystander cells. A drawback of using biosafety level (BSL) 4 pathogens is that protocols are typically developed without consideration of virus inactivation during the procedure. To ensure complete inactivation of virus-containing samples for downstream analyses, an adaptation of the workflow is needed. Focusing on a commercially available microfluidic partitioning scRNA-seq platform to prepare samples for scRNA-seq, we tested various chemical and physical components of the platform for their ability to inactivate Nipah virus (NiV), a BSL-4 pathogen that belongs to the group of nonsegmented negative-sense RNA viruses. The only step of the standard protocol that led to NiV inactivation was a 5 min incubation at 85 °C. To comply with the more stringent biosafety requirements for BSL-4-derived samples, we included an additional heat step after cDNA synthesis. This step alone was sufficient to inactivate NiV-containing samples, adding to the necessary inactivation redundancy. Importantly, the additional heat step did not affect sample quality or downstream scRNA-seq results.

2.
Cell Stem Cell ; 31(5): 657-675.e8, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38642558

RESUMO

Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human in vitro AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais , Células Cultivadas , Transcriptoma/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
3.
Cell Stem Cell ; 30(9): 1199-1216.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37625411

RESUMO

Life-long reconstitution of a tissue's resident stem cell compartment with engrafted cells has the potential to durably replenish organ function. Here, we demonstrate the engraftment of the airway epithelial stem cell compartment via intra-airway transplantation of mouse or human primary and pluripotent stem cell (PSC)-derived airway basal cells (BCs). Murine primary or PSC-derived BCs transplanted into polidocanol-injured syngeneic recipients give rise for at least two years to progeny that stably display the morphologic, molecular, and functional phenotypes of airway epithelia. The engrafted basal-like cells retain extensive self-renewal potential, evident by the capacity to reconstitute the tracheal epithelium through seven generations of secondary transplantation. Using the same approach, human primary or PSC-derived BCs transplanted into NOD scid gamma (NSG) recipient mice similarly display multilineage airway epithelial differentiation in vivo. Our results may provide a step toward potential future syngeneic cell-based therapy for patients with diseases resulting from airway epithelial cell damage or dysfunction.


Assuntos
Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Terapia Baseada em Transplante de Células e Tecidos , Células Epiteliais , Epitélio , Camundongos Endogâmicos NOD , Camundongos SCID
4.
Cell Stem Cell ; 30(12): 1640-1657.e8, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029740

RESUMO

The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.


Assuntos
Hepatopatias , Peixe-Zebra , Animais , Camundongos , Humanos , RNA Mensageiro/genética , Vacinas contra COVID-19 , Nucleosídeos , Hepatócitos , Fígado , Células Epiteliais , Hepatopatias/patologia , Fibrose , Regeneração Hepática , Fator A de Crescimento do Endotélio Vascular/genética
5.
Hum Pathol ; 134: 102-113, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36581128

RESUMO

Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is an aggressive, rare genetic disease affecting the kidney and other organ systems. We constructed a specialized multi-institutional cohort of 20 primary FH-deficient RCC cases with aims of characterizing a new commercially available antibody, S-(2-succino)-cysteine (2SC). Herein, we present our findings on the biomarker characterization and performance of 2SC expression by immunohistochemistry (IHC) in FH-deficient RCC and other common and rare RCC subtypes. Morphological assessment revealed characteristic cytomorphologic features and a majority (55%) of FH-deficient RCC had mixed architectural growth patterns. We observed predominantly diffuse and strong cytoplasmic staining with limited nuclear positivity for 2SC staining on IHC. Receiver operating characteristic curves (ROC) for 2SC identified the threshold IHC score (cutoff) as 90, with the sensitivity and specificity being 100% and 91%, respectively. The findings of the present study along with the prior evidence in literature encourage utilization of 2SC as a positive marker along with the loss of FH expression by anti-FH IHC staining as a negative marker, in clinical and/or pathologic scenarios when considering FH-deficient RCC in the differential diagnosis. FH-/2SC+ may serve as a comprehensive IHC panel in identifying such cases and excluding morphologically similar entities.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Neoplasias Uterinas , Humanos , Feminino , Carcinoma de Células Renais/patologia , Cisteína , Fumarato Hidratase , Leiomiomatose/genética , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética , Neoplasias Uterinas/patologia
6.
Int J Surg Pathol ; 31(6): 1027-1040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36250542

RESUMO

Introduction. Chromophobe renal cell carcinoma (chromophobe RCC) is the third major subcategory of renal tumors after clear cell RCC and papillary RCC, accounting for approximately 5% of all RCC subtypes. Other oncocytic neoplasms seen commonly in surgical pathology practice include the eosinophilic variant of chromophobe RCC, renal oncocytoma, and low-grade oncocytic unclassified RCC. Methods. In our recent next-generation sequencing based study, we nominated a lineage-specific novel biomarker LINC01187 (long intergenic non-protein coding RNA 1187) which was found to be enriched in chromophobe RCC. Like KIT (cluster of differentiation 117; CD117), a clinically utilized chromophobe RCC related biomarker, LINC01187 is expressed in intercalated cells of the nephron. In this follow-up study, we performed KIT immunohistochemistry and LINC01187 RNA in situ hybridization (RNA-ISH) on a cohort of chromophobe RCC and other renal neoplasms, characterized the expression patterns, and quantified the expression signals of the two biomarkers in both primary and metastatic settings. Results. LINC01187, in comparison to KIT, exhibits stronger and more uniform expression within tumors while maintaining temporal and spatial consistency. LINC01187 also is devoid of intra-tumoral heterogeneous expression pattern, a phenomenon commonly noted with KIT. Conclusions. LINC01187 expression can augment the currently utilized KIT assay and help facilitate easy microscopic analyses in routine surgical pathology practice.


Assuntos
Adenoma Oxífilo , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Seguimentos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Adenoma Oxífilo/diagnóstico , Adenoma Oxífilo/patologia , Biomarcadores Tumorais/metabolismo , RNA , Diagnóstico Diferencial
7.
Prostate Cancer Prostatic Dis ; 25(4): 659-665, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34226663

RESUMO

BACKGROUND: Tumors with mutations associated with homologous recombination deficiency (HRD) are uncommon in prostate cancer (PCa) and variably responsive to PARP inhibition. To better identify tumors with HRD, we developed a transcriptomic signature for HRD in PCa (HRD-P). METHODS: By using an established mutational signature, we created and validated HRD-P in six independent PCa cohorts (primary PCa, n = 8224; metastatic castration-resistant PCa [mCRPC], n = 328). Molecular and clinical features were compared between HRD-P+ tumors and those with single HR-gene mutations. RESULTS: HRD-P+ tumors were more common than tumors with single HR-gene mutations in primary (201/491, 41% vs 32/491 6.5%) and mCRPC (126/328, 38% vs 82/328, 25%) cases, and HRD-P+ was more predictive of genomic instability suggestive of HRD. HRD-P+ was associated with a shorter time to recurrence following surgery and shorter overall survival in men with mCRPC. In a prospective trial of mCRPC treated with olaparib (n = 10), all three men with HRD-P+ experienced prolonged (>330 days) PSA progression-free survival. CONCLUSION: These results suggest transcriptomics can identify more patients that harbor phenotypic HRD than single HR-gene mutations and support further exploration of transcriptionally defined HRD tumors perhaps in conjunction with genomic markers for therapeutic application.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Transcriptoma , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Prospectivos , Biomarcadores Tumorais/genética , Recombinação Homóloga
8.
Med Oncol ; 37(3): 16, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32030484

RESUMO

Despite early diagnosis and established protocols, a subset of prostate cancer patients will eventually be categorized as castration-resistant prostate cancer. Recently, it has been reported that these multi-modal therapy cases may harbor a special subset of cancer cells termed as polypoidal giant cancer cells (PGCC). These cells are phenotypically described either as possessing highly irregular polylobated nuclei or multiple pleomorphic nuclei. To identify and characterize the distribution of these cells, we created a cohort of 5 randomly selected cases of multi-modal therapy failure prostate cancer (16 selected non-osseous and osseous tumor sites) enrolled in Michigan Legacy Tissue Program. In all cases, specific "regions of interest" or "hot spots" within tumor areas showing an increased proportion of these multi-nucleated/polylobated cells under light microscopy were labeled as PGCC-rich area. On microscopic evaluation, overall mean count of PGCC was 42.4 ± 3.91 with case 2 in the study cohort with the highest number of average PGCC count of 17 ± 4.04. Site wise analysis showed retroperitoneal lymph node as the tissue with highest number of average PGCC number/site (5.0 ± 0.32). On correlating the average number of PGCC recorded with the time elapsed from last dose of chemotherapy administered to autopsy, the spearman correlation value (R) was 0.67, but the result was not statistically significant (p = 0.22). A systematic assessment of PGCC in a large stratified cohort of prostate cancer patients integrated with various histopathological and clinical parameters along with discovery of specific biomarkers for PGCC are the future studies suggested.


Assuntos
Células Gigantes/patologia , Poliploidia , Neoplasias de Próstata Resistentes à Castração/patologia , Autopsia , Estudos de Coortes , Células Gigantes/metabolismo , Humanos , Masculino , Metástase Neoplásica
9.
Mol Genet Genomic Med ; 5(1): 15-20, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116326

RESUMO

BACKGROUND: The hg19 assembly of the human genome is the most heavily annotated and most commonly used reference to make variant calls for individual genomes. Based on the phase 3 report of the 1000 genomes project (1000G), it is now well known that many positions in the hg19 genome represent minor alleles. Since commonly used variant call methods are developed under the assumption that hg19 reference harbors major alleles at all the ~3 billion positions, these methods mask the calls whenever an individual is homozygous to the minor allele at the respective positions. Hence, it is important to address the extent and impact of these minor alleles in hg19 from the point of view of individual genomes. METHOD: We have created a reference genome, hg19K, in which all the positions in hg19 reference harboring minor allele were replaced by those from the phase 3 report of the 1000 genomes project. The genomes of five individuals, downloaded from the public repository, were analyzed using both hg19 and hg19K and compared. RESULTS: Out of the 81 million SNPs in phase 3 report from the 1000 genomes project, 1.9 million positions were found to be major alleles compared to hg19 with many having an allele frequency of >0.9. We observed that ~30% of the SNVs found in individual genomes are confined to the 1.9 million positions. Also, there are ~8% unique SNVs predicted using hg19K-based approach, which are also confined to the 1.9 million positions. CONCLUSION: We report that the presence of minor alleles in hg19 alone results in ~8% false negatives and ~30% false positives during variant calls. Also, among the variant calls unique to hg19K-based methods, which are missed in individuals homozygous to the minor alleles in hg19-based prediction, some are deleterious missense mutations at sites conserved across diverse species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA