Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 185(24): 4488-4506.e20, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36318922

RESUMO

When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.


Assuntos
Proteínas Serina-Treonina Quinases , Fosforilação , Tamanho Celular
2.
Am J Physiol Renal Physiol ; 318(6): F1341-F1356, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32281415

RESUMO

We characterized mouse blood pressure and ion transport in the setting of commonly used rodent diets that drive K+ intake to the extremes of deficiency and excess. Male 129S2/Sv mice were fed either K+-deficient, control, high-K+ basic, or high-KCl diets for 10 days. Mice maintained on a K+-deficient diet exhibited no change in blood pressure, whereas K+-loaded mice developed an ~10-mmHg blood pressure increase. Following challenge with NaCl, K+-deficient mice developed a salt-sensitive 8 mmHg increase in blood pressure, whereas blood pressure was unchanged in mice fed high-K+ diets. Notably, 10 days of K+ depletion induced diabetes insipidus and upregulation of phosphorylated NaCl cotransporter, proximal Na+ transporters, and pendrin, likely contributing to the K+-deficient NaCl sensitivity. While the anionic content with high-K+ diets had distinct effects on transporter expression along the nephron, both K+ basic and KCl diets had a similar increase in blood pressure. The blood pressure elevation on high-K+ diets correlated with increased Na+-K+-2Cl- cotransporter and γ-epithelial Na+ channel expression and increased urinary response to furosemide and amiloride. We conclude that the dietary K+ maneuvers used here did not recapitulate the inverse effects of K+ on blood pressure observed in human epidemiological studies. This may be due to the extreme degree of K+ stress, the low-Na+-to-K+ ratio, the duration of treatment, and the development of other coinciding events, such as diabetes insipidus. These factors must be taken into consideration when studying the physiological effects of dietary K+ loading and depletion.


Assuntos
Pressão Arterial , Hipertensão/metabolismo , Túbulos Renais/metabolismo , Deficiência de Potássio/metabolismo , Potássio na Dieta/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Ração Animal , Animais , Diabetes Insípido/etiologia , Diabetes Insípido/metabolismo , Diabetes Insípido/fisiopatologia , Canais Epiteliais de Sódio/metabolismo , Hipertensão/etiologia , Hipertensão/fisiopatologia , Transporte de Íons , Túbulos Renais/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Natriurese , Fosforilação , Deficiência de Potássio/etiologia , Deficiência de Potássio/fisiopatologia , Potássio na Dieta/administração & dosagem , Potássio na Dieta/toxicidade , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/toxicidade , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Transportadores de Sulfato/metabolismo
3.
Sci Rep ; 10(1): 20767, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247173

RESUMO

Vitamin H (biotin) is delivered to the fetus transplacentally by an active biotin-transport mechanism and is critical for fetal development. Our objective was to develop a comprehensive MRI technique for mapping biotin transporter activity in the murine placenta. Visualization of transporter activity can employ MRI's unique T2*-dependent signal 'off-switch', which is triggered by transporter mediated aggregation of biotinylated contrast agent (b-BSA-Gd-DTPA). MRI data were collected from pregnant mice after administration of b-BSA-Gd-DTPA and analyzed using a new sub-voxel biophysical signal model. Validation experiments included competition with native biotin, comparative tests using PET, histology, and ICPMS. MRI signal was governed by binding, aggregation, and clearance of biotin (confirmed by histology). Signal dynamics reflected the placenta's perfusion pattern modulated by biotin transporter activity and trophoblast mediated retention, and were in congruence with a three-compartment sub-voxel model. Pre-saturation of the transporters with free biotin suppressed b-BSA-Gd-DTPA uptake. The results were confirmed by PET, histology and ICPMS. The presented MRI-based platform allows to track activity of essential molecular transporters in the placenta, reflecting a transporter-mediated uptake, followed by retention and aggregation, and recycling associated with the large b-BSA-Gd-DTPA conjugate. The presented DCE-MRI technique can furthermore be used to map and characterize microstructural compartmentation and transporter activity without exposing the fetus to contrast media.


Assuntos
Biotina/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Placenta/metabolismo , Simportadores/metabolismo , Animais , Meios de Contraste , Feminino , Camundongos , Placenta/diagnóstico por imagem , Gravidez , Soroalbumina Bovina/química , Complexo Vitamínico B/metabolismo
4.
Pharmaceuticals (Basel) ; 12(4)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717279

RESUMO

Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.

5.
Exp Neurol ; 292: 35-45, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28215575

RESUMO

The molecular determinants of pathogenic leukocyte migration across the blood-nerve barrier (BNB) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are unknown. Specific disease modifying therapies for CIDP are also lacking. Fibronectin connecting segment-1 (FNCS1), an alternatively spliced fibronectin variant expressed by microvascular endothelial cells at sites of inflammation in vitro and in situ, is a counterligand for leukocyte α4 integrin (also known as CD49d) implicated in pathogenic leukocyte trafficking in multiple sclerosis and inflammatory bowel disease. We sought to determine the role of FNCS1 in CIDP patient leukocyte trafficking across the BNB in vitro and in severe chronic demyelinating neuritis in vivo using a representative spontaneous murine CIDP model. Peripheral blood mononuclear leukocytes from 7 untreated CIDP patients were independently infused into a cytokine-treated, flow-dependent in vitro BNB model system. Time-lapse digital video microscopy was performed to visualize and quantify leukocyte trafficking, comparing FNCS1 peptide blockade to relevant controls. Fifty 24-week old female B7-2 deficient non-obese diabetic mice with spontaneous autoimmune peripheral polyneuropathy (SAPP) were treated daily with 2mg/kg FNCS1 peptide for 5days via intraperitoneal injection with appropriate controls. Neurobehavioral measures of disease severity, motor nerve electrophysiology assessments and histopathological quantification of inflammation and morphometric assessment of demyelination were performed to determine in vivo efficacy. The biological relevance of FNCS1 and CD49d in CIDP was evaluated by immunohistochemical detection in affected patient sural nerve biopsies. 25µM FNCS1 peptide maximally inhibited CIDP leukocyte trafficking at the human BNB in vitro. FNCS1 peptide treatment resulted in significant improvements in disease severity, motor electrophysiological parameters of demyelination and histological measures of inflammatory demyelination. Microvessels demonstrating FNCS1 expression and CD49d+ leukocytes were seen within the endoneurium of patient nerve biopsies. Taken together, these results imply a role for FNCS1 in pathogenic leukocyte trafficking in CIDP, providing a potential target for therapeutic modulation.


Assuntos
Fibronectinas/metabolismo , Inflamação/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Peptídeos/farmacologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Idoso , Animais , Movimento Celular , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Leucócitos/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/metabolismo , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA