Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20240454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807519

RESUMO

Challenges imposed by geographical barriers during migration are selective agents for animals. Juvenile soaring landbirds often cross large water bodies along their migratory path, where they lack updraft support and are vulnerable to harsh weather. However, the consequences of inexperience in accomplishing these water crossings remain largely unquantified. To address this knowledge gap, we tracked the movements of juvenile and adult black kites Milvus migrans over the Strait of Gibraltar using high-frequency tracking devices in variable crosswind conditions. We found that juveniles crossed under higher crosswind speeds and at wider sections of the strait compared with adults during easterly winds, which represent a high risk owing to their high speed and steady direction towards the Atlantic Ocean. Juveniles also drifted extensively with easterly winds, contrasting with adults who strongly compensated for lateral displacement through flapping. Age differences were inconspicuous during winds with a west crosswind speed component, as well as for airspeed modulation in all wind conditions. We suggest that the suboptimal sea-crossing behaviour of juvenile black kites may impact their survival rates, either by increasing chances of drowning owing to exhaustion or by depleting critical energy reserves needed to accomplish their first migration.


Assuntos
Migração Animal , Vento , Animais , Fatores Etários , Falconiformes/fisiologia , Voo Animal , Oceano Atlântico
2.
Proc Biol Sci ; 288(1958): 20211603, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493076

RESUMO

Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea.


Assuntos
Voo Animal , Vento , Migração Animal , Animais , Aves , Água
3.
Mov Ecol ; 11(1): 44, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501209

RESUMO

BACKGROUND: Millions of birds travel every year between Europe and Africa detouring ecological barriers and funnelling through migratory corridors where they face variable weather conditions. Little is known regarding the response of migrating birds to mesoscale meteorological processes during flight. Specifically, sea-breeze has a daily cycle that may directly influence the flight of diurnal migrants. METHODS: We collected radar tracks of soaring migrants using modified weather radar in Latrun, central Israel, in 7 autumns between 2005 and 2016. We investigated how migrating soaring birds adjusted their flight speed and direction under the effects of daily sea-breeze circulation. We analysed the effects of wind on bird groundspeed, airspeed and the lateral component of the airspeed as a function of time of day using Generalized Additive Mixed Models. To identify when birds adjusted their response to the wind over time, we estimated first derivatives. RESULTS: Using data collected during a total of 148 days, we characterised the diel dynamics of horizontal wind flow relative to the migration goal, finding a consistent rotational movement of the wind blowing towards the East (morning) and to the South-East (late afternoon), with highest crosswind speed around mid-day and increasing tailwinds towards late afternoon. Airspeed of radar detected birds decreased consistently with increasing tailwind and decreasing crosswinds from early afternoon, resulting in rather stable groundspeed of 16-17 m/s. In addition, birds fully compensated for lateral drift when crosswinds were at their maximum and slightly drifted with the wind when crosswinds decreased and tailwinds became more intense. CONCLUSIONS: Using a simple and broadly applicable statistical method, we studied how wind influences bird flight through speed adjustments over time, providing new insights regarding the flexible behavioural responses of soaring birds to wind conditions. These adjustments allowed the birds to compensate for lateral drift under crosswind and reduced their airspeed under tailwind. Our work enhances our understanding of how migrating birds respond to changing wind conditions during their long-distance journeys through migratory corridors.

4.
Sci Rep ; 13(1): 5071, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977731

RESUMO

Recent biologging technology reveals hidden life and breeding strategies of nocturnal animals. Combining animal movement patterns with individual characteristics and landscape features can uncover meaningful behaviours that directly influence fitness. Consequently, defining the proximate mechanisms and adaptive value of the identified behaviours is of paramount importance. Breeding female barn owls (Tyto alba), a colour-polymorphic species, recurrently visit other nest boxes at night. We described and quantified this behaviour for the first time, linking it with possible drivers, and individual fitness. We GPS-equipped 178 female barn owls and 122 male partners from 2016 to 2020 in western Switzerland during the chick rearing phase. We observed that 111 (65%) of the tracked breeding females were (re)visiting nest boxes while still carrying out their first brood. We modelled their prospecting parameters as a function of brood-, individual- and partner-related variables and found that female feather eumelanism predicted the emergence of prospecting behaviour (less melanic females are usually prospecting). More importantly we found that increasing male parental investment (e.g., feeding rate) increased female prospecting efforts. Ultimately, females would (re)visit a nest more often if they had used it in the past and were more likely to lay a second clutch afterwards, consequently having higher annual fecundity than non-prospecting females. Despite these apparent immediate benefits, they did not fledge more chicks. Through biologging and long-term field monitoring, we highlight how phenotypic traits (melanism and parental investment) can be related to movement patterns and the annual potential reproductive output (fecundity) of female barn owls.


Assuntos
Reprodução , Estrigiformes , Animais , Feminino , Masculino , Fertilidade , Plumas , Fenótipo
5.
PLoS One ; 6(5): e19966, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21647444

RESUMO

Most seabirds are diurnal foragers, but some species may also feed at night. In Peruvian pelicans (Pelecanus thagus), the evidence for nocturnal foraging is sparse and anecdotal. We used GPS-dataloggers on five incubating Peruvian pelicans from Isla Lobos de Tierra, Perú, to examine their nocturnality, foraging movements and activities patterns at sea. All instrumented pelicans undertook nocturnal trips during a 5-7 day tracking period. Eighty-seven percent of these trips (n = 13) were strictly nocturnal, whereas the remaining occurred during the day and night. Most birds departed from the island after sunset and returned a few hours after sunrise. Birds traveled south of the island for single-day trips at a maximum range of 82.8 km. Overall, 22% of the tracking period was spent at sea, whereas the remaining time was spent on the island. In the intermediate section of the trip (between inbound and outbound commutes), birds spent 77% of the trip time in floating bouts interspersed by short flying bouts, the former being on average three times longer than the latter. Taken together, the high sinuosity of the bird's tracks during floating bouts, the exclusively nocturnal trips of most individuals, and the fact that all birds returned to the island within a few hours after sunrise suggest that pelicans were actively feeding at night. The nocturnal foraging strategy of Peruvian pelicans may reduce food competition with the sympatric and strictly diurnal Guanay cormorants (Phalacrocorax bougainvillii), Peruvian boobies (Sula variegata) and Blue-footed boobies (S. nebouxii), which were present on the island in large numbers. Likewise, plankton bioluminescence might be used by pelicans as indirect cues to locate anchovies during their upward migration at night. The foraging success of pelicans at night may be enhanced by seizing prey close to the sea surface using a sit-and-wait strategy.


Assuntos
Comportamento Animal/fisiologia , Aves/fisiologia , Ritmo Circadiano , Sistemas de Informação Geográfica , Movimento/fisiologia , Adaptação Fisiológica/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA