RESUMO
The motivation behind this research is the lack of an underground mining shaft data set in the literature in the form of open access. For this reason, our data set can be used for many research purposes such as shaft inspection, 3D measurements, simultaneous localization and mapping, artificial intelligence, etc. The data collection method incorporates rotated Velodyne VLP-16, Velodyne Ultra Puck VLP-32c, Livox Tele-15, IMU Xsens MTi-30 and Faro Focus 3D. The ground truth data were acquired with a geodetic survey including 15 ground control points and 6 Faro Focus 3D terrestrial laser scanner stations of a total 273,784,932 of 3D measurement points. This data set provides an end-user case study of realistic applications in mobile mapping technology. The goal of this research was to fill the gap in the underground mining data set domain. The result is the first open-access data set for an underground mining shaft (shaft depth -300 m).
RESUMO
This paper describes an affordable robotic mobile 3D mapping system. It is built with Livox Mid-40 lidar with a conic field of view extended by a custom rotating planar reflector. This 3D sensor is compared with the more expensive Velodyne VLP 16 lidar. It is shown that the proposed sensor reaches satisfactory accuracy and range. Furthermore, it is able to preserve the metric accuracy and non-repetitive scanning pattern of the unmodified sensor. Due to preserving the non-repetitive scan pattern, our system is capable of covering the entire field of view of 38.4 × 360 degrees, which is an added value of conducted research. We show the calibration method, mechanical design, and synchronization details that are necessary to replicate our system. This work extends the applicability of solid-state lidars since the field of view can be reshaped with minimal loss of measurement properties. The solution was part of a system that was evaluated during the 3rd European Robotics Hackathon in the Zwentendorf Nuclear Power Plant. The experimental part of the paper demonstrates that our affordable robotic mobile 3D mapping system is capable of providing 3D maps of a nuclear facility that are comparable to the more expensive solution.
RESUMO
This paper describes the calibration method for calculating parameters (position and orientation) of planar reflectors reshaping LiDAR's (light detection and ranging) field of view. The calibration method is based on the reflection equation used in the ICP (Iterative Closest Point) optimization. A novel calibration process as the multi-view data registration scheme is proposed; therefore, the poses of the measurement instrument and parameters of planar reflectors are calculated simultaneously. The final metric measurement is more accurate compared with parameters retrieved from the mechanical design. Therefore, it is evident that the calibration process is required for affordable solutions where the mechanical design can differ from the inaccurate assembly. It is shown that the accuracy is less than 20 cm for almost all measurements preserving long-range capabilities. The experiment is performed based on Livox Mid-40 LiDAR augmented with six planar reflectors. The ground-truth data were collected using Z + F IMAGER 5010 3D Terrestrial Laser Scanner. The calibration method is independent of mechanical design and does not require any fiducial markers on the mirrors. This work fulfils the gap between rotating and Solid-State LiDARs since the field of view can be reshaped by planar reflectors, and the proposed method can preserve the metric accuracy. Thus, such discussion concludes the findings. We prepared an open-source project and provided all the necessary data for reproducing the experiments. That includes: Complete open-source code, the mechanical design of reflector assembly and the dataset which was used in this paper.
RESUMO
This paper concerns a new methodology for accuracy assessment of GPS (Global Positioning System) verified experimentally with LiDAR (Light Detection and Ranging) data alignment at continent scale for autonomous driving safety analysis. Accuracy of an autonomous driving vehicle positioning within a lane on the road is one of the key safety considerations and the main focus of this paper. The accuracy of GPS positioning is checked by comparing it with mobile mapping tracks in the recorded high-definition source. The aim of the comparison is to see if the GPS positioning remains accurate up to the dimensions of the lane where the vehicle is driving. The goal is to align all the available LiDAR car trajectories to confirm the of accuracy of GNSS + INS (Global Navigation Satellite System + Inertial Navigation System). For this reason, the use of LiDAR metric measurements for data alignment implemented using SLAM (Simultaneous Localization and Mapping) was investigated, assuring no systematic drift by applying GNSS+INS constraints. The methodology was verified experimentally using arbitrarily chosen measurement instruments (NovAtel GNSS + INS, Velodyne HDL32 LiDAR) mounted onto mobile mapping systems. The accuracy was assessed and confirmed by the alignment of 32,785 trajectories with a total length of 1,159,956.9 km and a total of 186.4 × 109 optimized parameters (six degrees of freedom of poses) that cover the United States region in the 2016-2019 period. The alignment improves the trajectories; thus the final map is consistent. The proposed methodology extends the existing methods of global positioning system accuracy assessment, focusing on realistic environmental and driving conditions. The impact of global positioning system accuracy on autonomous car safety is discussed. It is shown that 99% of the assessed data satisfy the safety requirements (driving within lanes of 3.6 m) for Mid-Size (width 1.85 m, length 4.87 m) vehicles and 95% for Six-Wheel Pickup (width 2.03-2.43 m, length 5.32-6.76 m). The conclusion is that this methodology has great potential for global positioning accuracy assessment at the global scale for autonomous driving applications. LiDAR data alignment is introduced as a novel approach to GNSS + INS accuracy confirmation. Further research is needed to solve the identified challenges.