RESUMO
Multiple myeloma (MM) is a plasma cell neoplasm associated with a broad variety of genetic lesions. In spite of this genetic heterogeneity, MMs share a characteristic malignant phenotype whose underlying molecular basis remains poorly characterized. In the present study, we examined plasma cells from MM using a multi-epigenomics approach and demonstrated that, when compared to normal B cells, malignant plasma cells showed an extensive activation of regulatory elements, in part affecting coregulated adjacent genes. Among target genes up-regulated by this process, we found members of the NOTCH, NF-kB, MTOR signaling, and TP53 signaling pathways. Other activated genes included sets involved in osteoblast differentiation and response to oxidative stress, all of which have been shown to be associated with the MM phenotype and clinical behavior. We functionally characterized MM-specific active distant enhancers controlling the expression of thioredoxin (TXN), a major regulator of cellular redox status and, in addition, identified PRDM5 as a novel essential gene for MM. Collectively, our data indicate that aberrant chromatin activation is a unifying feature underlying the malignant plasma cell phenotype.
Assuntos
Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Plasmócitos/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Humanos , NF-kappa B/metabolismo , Osteogênese/genética , Receptores Notch/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para CimaRESUMO
Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Regiões 3' não Traduzidas/genética , Processamento Alternativo/genética , Linfócitos B/metabolismo , Proteínas de Transporte/genética , Cromossomos Humanos Par 9/genética , Análise Mutacional de DNA , DNA de Neoplasias/genética , Proteínas de Ligação a DNA , Elementos Facilitadores Genéticos/genética , Genômica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fator de Transcrição PAX5/biossíntese , Fator de Transcrição PAX5/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Transcrição/genéticaAssuntos
Carcinogênese , Mosaicismo , Humanos , Carcinogênese/genética , Neoplasias/genética , AnimaisRESUMO
PURPOSE OF REVIEW: SOX11 has emerged as a key transcription factor in the pathogenesis of mantle cell lymphoma (MCL) whereas it is not expressed in normal B cells or virtually in any other mature B-cell neoplasm. This review will examine the role of SOX11 as a biomarker in MCL, the new information on its transcriptional targets, and the mechanisms regulating its expression in MCL. RECENT FINDINGS: SOX11 is highly expressed in conventional MCL, including cyclin D1-negative cases, but it is not expressed in the indolent leukemic nonnodal MCL subtype. These two MCL subtypes also differ in their cell-of-origin, IGHV mutational status and genomic instability. SOX11 promotes tumor growth of MCL cells in vivo and regulates a broad transcriptional program that includes B-cell differentiation pathways and tumor-microenvironment interactions, among others. The mechanisms upregulating SOX11 in MCL are not well understood but are mediated in part by the three-dimensional reconfiguration of the DNA, bringing together a distant enhancer region and the SOX11 promoter. SUMMARY: SOX11 is a relevant element in the pathogenesis of MCL and has been instrumental to identify two distinct clinicobiological subtypes of this tumor. Further studies should clarify the mechanisms mediating its oncogenic potential and leading to its intriguing expression in these tumors.
Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfoma de Célula do Manto/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição SOXC/metabolismo , Microambiente Tumoral , Animais , Biomarcadores Tumorais/genética , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Proteínas de Neoplasias/genética , Fatores de Transcrição SOXC/genéticaRESUMO
While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.
Assuntos
Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Mieloma Múltiplo/genética , Células-Tronco Neoplásicas/citologia , Plasmócitos/citologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Ilhas de CpG/genética , DNA de Neoplasias/genética , Regulação para Baixo/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genéticaRESUMO
Severe congenital neutropenia (CN) is a preleukemic bone marrow failure syndrome with a 20% risk of evolving into leukemia or myelodysplastic syndrome (MDS). Patterns of acquisition of leukemia-associated mutations were investigated using next-generation deep-sequencing in 31 CN patients who developed leukemia or MDS. Twenty (64.5%) of the 31 patients had mutations in RUNX1. A majority of patients with RUNX1 mutations (80.5%) also had acquired CSF3R mutations. In contrast to their high frequency in CN patients who developed leukemia or MDS, RUNX1 mutations were found in only 9 of 307 (2.9%) patients with de novo pediatric acute myeloid leukemia. A sequential analysis at stages prior to overt leukemia revealed RUNX1 mutations to be late events in leukemic transformation. Single-cell analyses in 2 patients showed that RUNX1 and CSF3R mutations were present in the same malignant clone. Functional studies demonstrated elevated granulocyte colony-stimulating factor (G-CSF)-induced proliferation with diminished myeloid differentiation of hematopoietic CD34(+) cells coexpressing mutated forms of RUNX1 and CSF3R. The high frequency of cooperating RUNX1 and CSF3R mutations in CN patients suggests a novel molecular pathway of leukemogenesis: mutations in the hematopoietic cytokine receptor (G-CSFR) in combination with the second mutations in the downstream hematopoietic transcription fator (RUNX1). The detection of both RUNX1 and CSF3R mutations could be used as a marker for identifying CN patients with a high risk of progressing to leukemia or MDS.
Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide/genética , Mutação , Neutropenia/congênito , Receptores de Fator Estimulador de Colônias/genética , Adolescente , Adulto , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea , Análise Citogenética , Feminino , Humanos , Masculino , Neutropenia/genética , Neutropenia/patologia , Transdução de Sinais/genética , Adulto JovemRESUMO
Ever since the discovery of DNA methylation at cytosine residues, the role of this so called fifth base has been extensively studied and debated. Until recently, the majority of DNA methylation studies focused on the analysis of CpG islands associated to promoter regions. However, with the upcoming possibilities to study DNA methylation in a genome-wide context, this epigenetic mark can now be studied in an unbiased manner. As a result, recent studies have shown that not only promoters but also intragenic and intergenic regions are widely modulated during physiological processes and disease. In particular, it is becoming increasingly clear that DNA methylation in the gene body is not just a passive witness of gene transcription but it seems to be actively involved in multiple gene regulation processes. In this review we discuss the potential role of intragenic DNA methylation in alternative promoter usage, regulation of short and long non-coding RNAs, alternative RNA processing, as well as enhancer activity. Furthermore, we summarize how the intragenic DNA methylome is modified both during normal cell differentiation and neoplastic transformation.
Assuntos
Diferenciação Celular/genética , Metilação de DNA , Regulação da Expressão Gênica , Neoplasias/genética , Transcrição Gênica , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos , Humanos , Neoplasias/patologia , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNARESUMO
Severe congenital neutropenia (SCN) is a BM failure syndrome with a high risk of progression to acute myeloid leukemia (AML). The underlying genetic changes involved in SCN evolution to AML are largely unknown. We obtained serial hematopoietic samples from an SCN patient who developed AML 17 years after the initiation of G-CSF treatment. Next- generation sequencing was performed to identify mutations during disease progression. In the AML phase, we found 12 acquired nonsynonymous mutations. Three of these, in CSF3R, LLGL2, and ZC3H18, co-occurred in a subpopulation of progenitor cells already in the early SCN phase. This population expanded over time, whereas clones harboring only CSF3R mutations disappeared from the BM. The other 9 mutations were only apparent in the AML cells and affected known AML-associated genes (RUNX1 and ASXL1) and chromatin remodelers (SUZ12 and EP300). In addition, a novel CSF3R mutation that conferred autonomous proliferation to myeloid progenitors was found. We conclude that progression from SCN to AML is a multistep process, with distinct mutations arising early during the SCN phase and others later in AML development. The sequential gain of 2 CSF3R mutations implicates abnormal G-CSF signaling as a driver of leukemic transformation in this case of SCN.
Assuntos
Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Mutação , Proteínas de Neoplasias/genética , Neutropenia/genética , Adulto , Medula Óssea/metabolismo , Transformação Celular Neoplásica/metabolismo , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Proteínas de Neoplasias/metabolismo , Neutropenia/complicações , Neutropenia/congênito , Neutropenia/tratamento farmacológico , Neutropenia/metabolismo , Células-Tronco/metabolismoRESUMO
Granulocyte colony-stimulating factor (G-CSF) has been used in the clinic for more than 2 decades to treat congenital and acquired neutropenias and to reduce febrile neutropenia before or during courses of intensive cytoreductive therapy. In addition, healthy stem cell donors receive short-term treatment with G-CSF for mobilization of hematopoietic stem cells. G-CSF has also been applied in priming strategies designed to enhance the sensitivity of leukemia stem cells to cytotoxic agents, in protocols aimed to induce their differentiation and accompanying growth arrest and cell death, and in severe aplastic anemia and myelodysplastic syndrome (MDS) to alleviate anemia. The potential adverse effects of G-CSF administration, particularly the risk of malignant transformation, have fueled ongoing debates, some of which can only be settled in follow-up studies extending over several decades. This specifically applies to children with severe congenital neutropenia who receive lifelong treatment with G-CSF and in which the high susceptibility to develop MDS and acute myeloid leukemia (AML) has now become a major clinical concern. Here, we will highlight some of the controversies and challenges regarding the clinical application of G-CSF and discuss a possible role of G-CSF in malignant transformation, particularly in patients with neutropenia harboring mutations in the gene encoding the G-CSF receptor.
Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Leucemia Mieloide Aguda/induzido quimicamente , Síndromes Mielodisplásicas/induzido quimicamente , Neutropenia/tratamento farmacológico , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Anemia Aplástica/tratamento farmacológico , Anemia Aplástica/genética , Anemia Aplástica/metabolismo , Anemia Aplástica/patologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Criança , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Doadores Vivos , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neutropenia/congênito , Neutropenia/metabolismo , Neutropenia/patologia , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Proteínas Recombinantes , Fatores de RiscoRESUMO
Single-cell DNA methylation profiling currently suffers from excessive noise and/or limited cellular throughput. We developed scTAM-seq, a targeted bisulfite-free method for profiling up to 650 CpGs in up to 10,000 cells per experiment, with a dropout rate as low as 7%. We demonstrate that scTAM-seq can resolve DNA methylation dynamics across B-cell differentiation in blood and bone marrow, identifying intermediate differentiation states that were previously masked. scTAM-seq additionally queries surface-protein expression, thus enabling integration of single-cell DNA methylation information with cell atlas data. In summary, scTAM-seq is a high-throughput, high-confidence method for analyzing DNA methylation at single-CpG resolution across thousands of single cells.
Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Ilhas de CpG , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
To investigate the three-dimensional (3D) genome architecture across normal B cell differentiation and in neoplastic cells from different subtypes of chronic lymphocytic leukemia and mantle cell lymphoma patients, here we integrate in situ Hi-C and nine additional omics layers. Beyond conventional active (A) and inactive (B) compartments, we uncover a highly-dynamic intermediate compartment enriched in poised and polycomb-repressed chromatin. During B cell development, 28% of the compartments change, mostly involving a widespread chromatin activation from naive to germinal center B cells and a reversal to the naive state upon further maturation into memory B cells. B cell neoplasms are characterized by both entity and subtype-specific alterations in 3D genome organization, including large chromatin blocks spanning key disease-specific genes. This study indicates that 3D genome interactions are extensively modulated during normal B cell differentiation and that the genome of B cell neoplasias acquires a tumor-specific 3D genome architecture.
Assuntos
Linfócitos B/metabolismo , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Genoma Humano/genética , Linfócitos B/citologia , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologiaRESUMO
B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.
Assuntos
Genoma/genética , Centro Germinativo/metabolismo , Linfoma de Células B/genética , Mutação/genética , Adulto , Linfócitos B/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Genes de Imunoglobulinas/genética , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Switching de Imunoglobulina/genética , Células K562 , Células MCF-7 , Hipermutação Somática de Imunoglobulina/genética , Recombinação V(D)J/genéticaRESUMO
BACKGROUND: Tiling-arrays are applicable to multiple types of biological research questions. Due to its advantages (high sensitivity, resolution, unbiased), the technology is often employed in genome-wide investigations. A major challenge in the analysis of tiling-array data is to define regions-of-interest, i.e., contiguous probes with increased signal intensity (as a result of hybridization of labeled DNA) in a region. Currently, no standard criteria are available to define these regions-of-interest as there is no single probe intensity cut-off level, different regions-of-interest can contain various numbers of probes, and can vary in genomic width. Furthermore, the chromosomal distance between neighboring probes can vary across the genome among different arrays. RESULTS: We have developed Hypergeometric Analysis of Tiling-arrays (HAT), and first evaluated its performance for tiling-array datasets from a Chromatin Immunoprecipitation study on chip (ChIP-on-chip) for the identification of genome-wide DNA binding profiles of transcription factor Cebpa (used for method comparison). Using this assay, we can refine the detection of regions-of-interest by illustrating that regions detected by HAT are more highly enriched for expected motifs in comparison with an alternative detection method (MAT). Subsequently, data from a retroviral insertional mutagenesis screen were used to examine the performance of HAT among different applications of tiling-array datasets. In both studies, detected regions-of-interest have been validated with (q)PCR. CONCLUSIONS: We demonstrate that HAT has increased specificity for analysis of tiling-array data in comparison with the alternative method, and that it accurately detects regions-of-interest in two different applications of tiling-arrays. HAT has several advantages over previous methods: i) as there is no single cut-off level for probe-intensity, HAT can detect regions-of-interest at various thresholds, ii) it can detect regions-of-interest of any size, iii) it is independent of probe-resolution across the genome, and across tiling-array platforms and iv) it employs a single user defined parameter: the significance level. Regions-of-interest are detected by computing the hypergeometric-probability, while controlling the Family Wise Error. Furthermore, the method does not require experimental replicates, common regions-of-interest are indicated, a sequence-of-interest can be examined for every detected region-of-interest, and flanking genes can be reported.
Assuntos
Imunoprecipitação da Cromatina/métodos , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regiões Promotoras Genéticas , Software , GenomaRESUMO
We report a systematic analysis of the DNA methylation variability in 1,595 samples of normal cell subpopulations and 14 tumor subtypes spanning the entire human B-cell lineage. Differential methylation among tumor entities relates to differences in cellular origin and to de novo epigenetic alterations, which allowed us to build an accurate machine learning-based diagnostic algorithm. We identify extensive patient-specific methylation variability in silenced chromatin associated with the proliferative history of normal and neoplastic B cells. Mitotic activity generally leaves both hyper- and hypomethylation imprints, but some B-cell neoplasms preferentially gain or lose DNA methylation. Subsequently, we construct a DNA methylation-based mitotic clock called epiCMIT, whose lapse magnitude represents a strong independent prognostic variable in B-cell tumors and is associated with particular driver genetic alterations. Our findings reveal DNA methylation as a holistic tracer of B-cell tumor developmental history, with implications in the differential diagnosis and prediction of clinical outcome.
Assuntos
Epigenoma , Neoplasias , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma/genética , Regulação Neoplásica da Expressão Gênica , HumanosRESUMO
Genome-wide association studies have provided evidence for inherited genetic predisposition to chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms underlying CLL risk we analyze chromatin accessibility, active regulatory elements marked by H3K27ac, and DNA methylation at 42 risk loci in up to 486 primary CLLs. We identify that risk loci are significantly enriched for active chromatin in CLL with evidence of being CLL-specific or differentially regulated in normal B-cell development. We then use in situ promoter capture Hi-C, in conjunction with gene expression data to reveal likely target genes of the risk loci. Candidate target genes are enriched for pathways related to B-cell development such as MYC and BCL2 signalling. At 14 loci the analysis highlights 63 variants as the probable functional basis of CLL risk. By integrating genetic and epigenetic information our analysis reveals novel insights into the relationship between inherited predisposition and the regulatory chromatin landscape of CLL.
Assuntos
Epigênese Genética/genética , Epigênese Genética/fisiologia , Epigenômica , Predisposição Genética para Doença/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfócitos B/metabolismo , Sequência de Bases , Cromatina/metabolismo , Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de TranscriçãoRESUMO
The ecotropic viral integration site 1 ( Evi1) gene encodes a putative transcription regulator, which is aberrantly expressed in acute myeloid leukemias (AML) with chromosomal abnormalities involving the 3q26 locus. Repression and activation of transcriptional control have been reported, but it is currently unclear how Evi1 may evoke these opposing effects. Using a yeast two-hybrid screen, we identified a novel binding partner of Evi1, i.e., methyl binding domain 3b (Mbd3b) protein, a member of the Mi-2/NuRD histone deacetylase complex. Applying in vitro and in vivo assays, we found that Evi1 interacts with Mbd3b but not with other MBD family members Mbd1, -2, and -4 or MeCP2. We show that interaction of Evi1 with Mbd3 requires 40 amino acids that are adjacent and downstream of the methyl binding domain (MBD). We further demonstrate that the first three zinc fingers of Evi1 are needed for Mbd3 interaction. Evi1 acts as a transcriptional repressor when recruited to an active promoter, yet when present in the Mi-2/NuRD complex through Mbd3 interaction, it inhibits the histone deacetylation function of this multiprotein structure. Our data may in part explain how Evi1 could act as a repressor as well as an activator of transcription.