Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 607(7919): 593-603, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768510

RESUMO

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Assuntos
5-Metilcitosina , Citosina/análogos & derivados , Glicólise , Mitocôndrias , Metástase Neoplásica , Fosforilação Oxidativa , RNA Mitocondrial , 5-Metilcitosina/biossíntese , 5-Metilcitosina/metabolismo , Antígenos CD36 , Sobrevivência Celular , Citosina/metabolismo , Progressão da Doença , Glicólise/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo
2.
J Biol Chem ; 298(3): 101682, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124003

RESUMO

miRNAs are short noncoding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, containing several miRNA precursors. The largest mammalian miRNA cluster, the miR-379-410 cluster, is expressed primarily during embryonic development and in the adult brain; however, downstream regulation of this cluster is not well understood. Here, we investigated adenosine deamination to inosine (RNA editing) in the miR-379-410 cluster by adenosine deaminase acting on RNA (ADAR) enzymes as a possible mechanism modulating the expression and activity of these miRNAs in a brain-specific manner. We show that the levels of editing in the majority of mature miRNAs are lower than the editing levels of the corresponding site in primary miRNA precursors. However, for one miRNA, miR-376b-3p, editing was significantly higher in the mature form than in the primary precursor. We found miR-376b-3p maturation is negatively regulated by ADAR2 in an editing activity-independent manner, whereas ADAR1-mediated and ADAR2-mediated editing were observed to be competitive. In addition, the edited miR-376b-3p targets a different set of mRNAs than unedited miR-376b-3p, including 4-aminobutyrate aminotransferase, encoding the enzyme responsible for the catabolism of the neurotransmitter gamma aminobutyric acid (GABA). Expression of edited miR-376b-3p led to increased intracellular GABA levels as well as increased cell surface presentation of GABA type A receptors. Our results indicate that both editing and editing-independent effects modulate the expression of miR-376b-3p, with the potential to regulate GABAergic signaling in the brain.


Assuntos
MicroRNAs , Proteínas de Ligação a RNA , Ácido gama-Aminobutírico , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurotransmissores , Edição de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Mol Cell ; 58(5): 870-85, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25921068

RESUMO

Circular RNAs (circRNAs) are an endogenous class of animal RNAs. Despite their abundance, their function and expression in the nervous system are unknown. Therefore, we sequenced RNA from different brain regions, primary neurons, isolated synapses, as well as during neuronal differentiation. Using these and other available data, we discovered and analyzed thousands of neuronal human and mouse circRNAs. circRNAs were extraordinarily enriched in the mammalian brain, well conserved in sequence, often expressed as circRNAs in both human and mouse, and sometimes even detected in Drosophila brains. circRNAs were overall upregulated during neuronal differentiation, highly enriched in synapses, and often differentially expressed compared to their mRNA isoforms. circRNA expression correlated negatively with expression of the RNA-editing enzyme ADAR1. Knockdown of ADAR1 induced elevated circRNA expression. Together, we provide a circRNA brain expression atlas and evidence for important circRNA functions and values as biomarkers.


Assuntos
Encéfalo/metabolismo , RNA/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Drosophila melanogaster , Humanos , Camundongos , Dados de Sequência Molecular , Neurogênese , Especificidade de Órgãos , RNA/genética , RNA Circular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Sinapses/metabolismo
4.
BMC Biol ; 18(1): 6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937309

RESUMO

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape. RESULTS: We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type-specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts. CONCLUSIONS: Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types.


Assuntos
Encéfalo/metabolismo , Edição de RNA , Adenosina/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Inosina/metabolismo , Camundongos , Análise de Sequência de RNA , Análise Espaço-Temporal
5.
Trends Genet ; 32(3): 165-175, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26803450

RESUMO

Post-transcriptional RNA modification by adenosine to inosine (A-to-I) editing expands the functional output of many important neuronally expressed genes. The mechanism provides flexibility in the proteome by expanding the variety of isoforms, and is a requisite for neuronal function. Indeed, targets for editing include key mediators of synaptic transmission with an overall significant effect on neuronal signaling. In addition, editing influences splice-site choice and miRNA targeting capacity, and thereby regulates neuronal gene expression. Editing efficiency at most of these sites increases during neuronal differentiation and brain maturation in a spatiotemporal manner. This editing-induced dynamics in the transcriptome is essential for normal brain development, and we are only beginning to understand its role in neuronal function. In this review we discuss the impact of RNA editing in the brain, with special emphasis on the physiological consequences for neuronal development and plasticity.


Assuntos
Encéfalo/citologia , Neurônios/citologia , Edição de RNA , Animais , Mamíferos , Splicing de RNA , Transcrição Gênica
6.
J Cell Sci ; 130(4): 745-753, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28082424

RESUMO

Adenosine to inosine (A-to-I) RNA editing is important for a functional brain, and most known sites that are subject to selective RNA editing have been found to result in diversified protein isoforms that are involved in neurotransmission. In the absence of the active editing enzymes ADAR1 or ADAR2 (also known as ADAR and ADARB1, respectively), mice fail to survive until adulthood. Nuclear A-to-I editing of neuronal transcripts is regulated during brain development, with low levels of editing in the embryo and a dramatic increase after birth. Yet, little is known about the mechanisms that regulate editing during development. Here, we demonstrate lower levels of ADAR2 in the nucleus of immature neurons than in mature neurons. We show that importin-α4 (encoded by Kpna3), which increases during neuronal maturation, interacts with ADAR2 and contributes to the editing efficiency by bringing it into the nucleus. Moreover, we detect an increased number of interactions between ADAR2 and the nuclear isomerase Pin1 as neurons mature, which contribute to ADAR2 protein stability. Together, these findings explain how the nuclear editing of substrates that are important for neuronal function can increase as the brain develops.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Inosina/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Edição de RNA , Adenosina Desaminase/química , Animais , Diferenciação Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Sinais de Localização Nuclear/metabolismo , Ligação Proteica , Ratos , alfa Carioferinas
7.
Cell Mol Life Sci ; 72(21): 4063-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26223268

RESUMO

The human genome is under constant invasion by retrotransposable elements. The most successful of these are the Alu elements; with a copy number of over a million, they occupy about 10 % of the entire genome. Interestingly, the vast majority of these Alu insertions are located in gene-rich regions, and one-third of all human genes contains an Alu insertion. Alu sequences are often embedded in gene sequence encoding pre-mRNAs and mature mRNAs, usually as part of their intron or UTRs. Once transcribed, they can regulate gene expression as well as increase the number of RNA isoforms expressed in a tissue or a species. They also regulate the function of other RNAs, like microRNAs, circular RNAs, and potentially long non-coding RNAs. Mechanistically, Alu elements exert their effects by influencing diverse processes, such as RNA editing, exonization, and RNA processing. In so doing, they have undoubtedly had a profound effect on human evolution.


Assuntos
Elementos Alu/fisiologia , Edição de RNA , Processamento Pós-Transcricional do RNA , Animais , Apoptose/genética , Evolução Molecular , Éxons , Regulação da Expressão Gênica , Genoma Humano , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Primatas/genética , RNA/metabolismo , RNA Circular , Regiões não Traduzidas
8.
Genome Res ; 22(8): 1477-87, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22645261

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing targets double-stranded RNA stem-loop structures in the mammalian brain. It has previously been shown that miRNAs are substrates for A-to-I editing. For the first time, we show that for several definitions of edited miRNA, the level of editing increases with development, thereby indicating a regulatory role for editing during brain maturation. We use high-throughput RNA sequencing to determine editing levels in mature miRNA, from the mouse transcriptome, and compare these with the levels of editing in pri-miRNA. We show that increased editing during development gradually changes the proportions of the two miR-376a isoforms, which previously have been shown to have different targets. Several other miRNAs that also are edited in the seed sequence show an increased level of editing through development. By comparing editing of pri-miRNA with editing and expression of the corresponding mature miRNA, we also show an editing-induced developmental regulation of miRNA expression. Taken together, our results imply that RNA editing influences the miRNA repertoire during brain maturation.


Assuntos
Adenosina/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inosina/metabolismo , MicroRNAs/metabolismo , Edição de RNA , Adenosina/genética , Animais , Sequência de Bases , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Biologia Computacional , Dendritos/genética , Dendritos/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Sequenciamento de Nucleotídeos em Larga Escala , Inosina/genética , Camundongos , MicroRNAs/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
9.
Nat Genet ; 56(5): 913-924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627597

RESUMO

How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, during single mitoses and at single-strand resolution. To distinguish between chronic (reactive oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we microfluidically separate pairs of sister cells from the first mitosis following burst UV damage. Strikingly, UV mutations manifest as sister-specific events, revealing mirror-image mutation phasing genome-wide. In contrast, ROS mutagenesis in transcribed regions is reduced strand agnostically. Successive rounds of genome replication over persisting UV damage drives multiallelic variation at CC dinucleotides. Finally, we show that mutation phasing can be resolved to single strands across the entire genome of liver tumors from F1 mice. This strategy can be broadly used to distinguish the contributions of overlapping cancer relevant mutational processes.


Assuntos
Dano ao DNA , Reparo do DNA , Mitose , Mutagênese , Raios Ultravioleta , Animais , Camundongos , Reparo do DNA/genética , Raios Ultravioleta/efeitos adversos , Dano ao DNA/genética , Mitose/genética , Espécies Reativas de Oxigênio/metabolismo , Mutação , Humanos
10.
Science ; 361(6409): 1346-1349, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30262497

RESUMO

RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programs. They affect diverse eukaryotic biological processes, and the correct deposition of many of these modifications is required for normal development. Messenger RNA (mRNA) modifications regulate various aspects of mRNA metabolism. For example, N 6-methyladenosine (m6A) affects the translation and stability of the modified transcripts, thus providing a mechanism to coordinate the regulation of groups of transcripts during cell state maintenance and transition. Similarly, some modifications in transfer RNAs are essential for RNA structure and function. Others are deposited in response to external cues and adapt global protein synthesis and gene-specific translational accordingly and thereby facilitate proper development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Doença/genética , Humanos , Metiltransferases/genética , Camundongos , Transcrição Gênica
11.
Genome Biol ; 15(2): R28, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24485196

RESUMO

BACKGROUND: RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures--a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. RESULTS: We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. CONCLUSIONS: We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought.


Assuntos
Elementos Alu/genética , Regulação da Expressão Gênica , Primatas/genética , Transcriptoma/genética , Adenosina/genética , Animais , Desaminação/genética , Genoma Humano , Humanos , Inosina/genética , Edição de RNA , Regiões não Traduzidas/genética
12.
Stem Cells Dev ; 22(16): 2254-67, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23534823

RESUMO

Urodele amphibians possess an amazing regenerative capacity that requires the activation of cellular plasticity in differentiated cells and progenitor/stem cells. Many aspects of regeneration in Urodele amphibians recapitulate development, making it unlikely that gene regulatory pathways which are essential for development are mutually exclusive from those necessary for regeneration. One such post-transcriptional gene regulatory pathway, which has been previously shown to be essential for functional metazoan development, is RNA editing. RNA editing catalyses discrete nucleotide changes in RNA transcripts, creating a molecular diversity that could create an enticing connection to the activated cellular plasticity found in newts during regeneration. To assess whether RNA editing occurs during regeneration, we demonstrated that GABRA3 and ADAR2 mRNA transcripts are edited in uninjured and regenerating tissues. Full open-reading frame sequences for ADAR1 and ADAR2, two enzymes responsible for adenosine-to-inosine RNA editing, were cloned from newt brain cDNA and exhibited a strong resemblance to ADAR (adenosine deaminase, RNA-specific) enzymes discovered in mammals. We demonstrated that ADAR1 and ADAR2 mRNA expression levels are differentially expressed during different phases of regeneration in multiple tissues, whereas protein expression levels remain unaltered. In addition, we have characterized a fascinating nucleocytoplasmic shuttling of ADAR1 in a variety of different cell types during regeneration, which could provide a mechanism for controlling RNA editing, without altering translational output of the editing enzyme. The link between RNA editing and regeneration provides further insights into how lower organisms, such as the newt, can activate essential molecular pathways via the discrete alteration of RNA sequences.


Assuntos
Adenosina Desaminase/genética , Regulação da Expressão Gênica , Regeneração Nervosa/fisiologia , Notophthalmus viridescens/genética , Edição de RNA , Regeneração/fisiologia , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Animais , Sequência de Bases , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Diferenciação Celular , Ativação Enzimática , Extremidades/lesões , Extremidades/fisiologia , Inosina/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Miocárdio/citologia , Miocárdio/metabolismo , Notophthalmus viridescens/metabolismo , Proteínas de Ligação a RNA , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA