Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125738

RESUMO

The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in Arabidopsis, targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering. The germination of RPOTmp overexpressors is less sensitive to NaCl, while rpotmp knockout is highly vulnerable to salt stress. We found that mitochondrial dysfunction in the rpotmp mutant induces an unknown retrograde response pathway that bypasses AOX and ANAC017. Here, we show that RPOTmp transcribes the accD, clpP, and rpoB genes in plastids and up to 22 genes in mitochondria.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Germinação , Mitocôndrias , Transcriptoma , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Mitocôndrias/genética , Cloroplastos/metabolismo , Cloroplastos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Germinação/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética
2.
BMC Genomics ; 21(1): 654, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32972367

RESUMO

BACKGROUND: Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from ~ 222 Kbp in Brassica napus to 11.3 Mbp in Silene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibirica Ledeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. RESULTS: Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. CONCLUSIONS: Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plant Silene conica (11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.


Assuntos
Tamanho do Genoma , Genoma Mitocondrial , Larix/genética , Mapeamento de Sequências Contíguas , Anotação de Sequência Molecular , Proteínas de Plantas/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA