Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1305-D1314, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953304

RESUMO

In 2003, the Human Disease Ontology (DO, https://disease-ontology.org/) was established at Northwestern University. In the intervening 20 years, the DO has expanded to become a highly-utilized disease knowledge resource. Serving as the nomenclature and classification standard for human diseases, the DO provides a stable, etiology-based structure integrating mechanistic drivers of human disease. Over the past two decades the DO has grown from a collection of clinical vocabularies, into an expertly curated semantic resource of over 11300 common and rare diseases linking disease concepts through more than 37000 vocabulary cross mappings (v2023-08-08). Here, we introduce the recently launched DO Knowledgebase (DO-KB), which expands the DO's representation of the diseaseome and enhances the findability, accessibility, interoperability and reusability (FAIR) of disease data through a new SPARQL service and new Faceted Search Interface. The DO-KB is an integrated data system, built upon the DO's semantic disease knowledge backbone, with resources that expose and connect the DO's semantic knowledge with disease-related data across Open Linked Data resources. This update includes descriptions of efforts to assess the DO's global impact and improvements to data quality and content, with emphasis on changes in the last two years.


Assuntos
Ecossistema , Bases de Conhecimento , Humanos , Doenças Raras , Semântica , Fatores de Tempo
2.
Nucleic Acids Res ; 52(D1): D1333-D1346, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953324

RESUMO

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


Assuntos
Ontologias Biológicas , Humanos , Fenótipo , Genômica , Algoritmos , Doenças Raras
3.
Nucleic Acids Res ; 50(D1): D1255-D1261, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755882

RESUMO

The Human Disease Ontology (DO) (www.disease-ontology.org) database, has significantly expanded the disease content and enhanced our userbase and website since the DO's 2018 Nucleic Acids Research DATABASE issue paper. Conservatively, based on available resource statistics, terms from the DO have been annotated to over 1.5 million biomedical data elements and citations, a 10× increase in the past 5 years. The DO, funded as a NHGRI Genomic Resource, plays a key role in disease knowledge organization, representation, and standardization, serving as a reference framework for multiscale biomedical data integration and analysis across thousands of clinical, biomedical and computational research projects and genomic resources around the world. This update reports on the addition of 1,793 new disease terms, a 14% increase of textual definitions and the integration of 22 137 new SubClassOf axioms defining disease to disease connections representing the DO's complex disease classification. The DO's updated website provides multifaceted etiology searching, enhanced documentation and educational resources.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Bases de Dados Genéticas , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/genética , Genômica/classificação , Humanos
4.
Mamm Genome ; 34(3): 364-378, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37076585

RESUMO

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.


Assuntos
Ontologias Biológicas , Disciplinas das Ciências Biológicas , Estudo de Associação Genômica Ampla , Fenótipo
5.
Nucleic Acids Res ; 48(D1): D704-D715, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31701156

RESUMO

In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.


Assuntos
Biologia Computacional/métodos , Genótipo , Fenótipo , Algoritmos , Animais , Ontologias Biológicas , Bases de Dados Genéticas , Exoma , Estudos de Associação Genética , Variação Genética , Genômica , Humanos , Internet , Software , Pesquisa Translacional Biomédica , Interface Usuário-Computador
6.
Nucleic Acids Res ; 47(D1): D774-D779, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30335138

RESUMO

The mouse Gene Expression Database (GXD) is an extensive, well-curated community resource freely available at www.informatics.jax.org/expression.shtml. Covering all developmental stages, GXD includes data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments in wild-type and mutant mice. GXD's gene expression information is integrated with the other data in Mouse Genome Informatics and interconnected with other databases, placing these data in the larger biological and biomedical context. Since the last report, the ability of GXD to provide insights into the molecular mechanisms of development and disease has been greatly enhanced by the addition of new data and by the implementation of new web features. These include: improvements to the Differential Gene Expression Data Search, facilitating searches for genes that have been shown to be exclusively expressed in a specified structure and/or developmental stage; an enhanced anatomy browser that now provides access to expression data and phenotype data for a given anatomical structure; direct access to the wild-type gene expression data for the tissues affected in a specific mutant; and a comparison matrix that juxtaposes tissues where a gene is normally expressed against tissues, where mutations in that gene cause abnormalities.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Transcriptoma/genética , Animais , Internet , Camundongos , Interface Usuário-Computador
7.
Nucleic Acids Res ; 47(D1): D1018-D1027, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30476213

RESUMO

The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO's interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Anormalidades Congênitas/genética , Predisposição Genética para Doença/genética , Bases de Conhecimento , Doenças Raras/genética , Anormalidades Congênitas/diagnóstico , Bases de Dados Genéticas , Variação Genética , Humanos , Internet , Fenótipo , Doenças Raras/diagnóstico , Sequenciamento Completo do Genoma/métodos
8.
Nucleic Acids Res ; 45(D1): D865-D876, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899602

RESUMO

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


Assuntos
Ontologias Biológicas , Biologia Computacional , Genômica , Fenótipo , Algoritmos , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Doenças Raras/diagnóstico , Doenças Raras/etiologia , Software , Pesquisa Translacional Biomédica/métodos
9.
Mamm Genome ; 26(7-8): 285-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26162703

RESUMO

A core part of the Mouse Genome Informatics (MGI) resource is the collection of mouse mutations and the annotation phenotypes and diseases displayed by mice carrying these mutations. These data are integrated with the rest of data in MGI and exported to numerous other resources. The use of mouse phenotype data to drive translational research into human disease has expanded rapidly with the improvements in sequencing technology. MGI has implemented many improvements in allele and phenotype data annotation, search, and display to facilitate access to these data through multiple avenues. For example, the description of alleles has been modified to include more detailed categories of allele attributes. This allows improved discrimination between mutation types. Further, connections have been created between mutations involving multiple genes and each of the genes overlapping the mutation. This allows users to readily find all mutations affecting a gene and see all genes affected by a mutation. In a similar manner, the genes expressed by transgenic or knock-in alleles are now connected to these alleles. The advanced search forms and public reports have been updated to take advantage of these improvements. These search forms and reports are used by an expanding number of researchers to identify novel human disease genes and mouse models of human disease.


Assuntos
Alelos , Genoma , Genômica/métodos , Fenótipo , Software , Animais , Bases de Dados Genéticas , Modelos Animais de Doenças , Genômica/tendências , Genótipo , Humanos , Camundongos , Camundongos Transgênicos , Anotação de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Pesquisa Translacional Biomédica
10.
Mamm Genome ; 26(7-8): 305-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26223881

RESUMO

The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.


Assuntos
Bases de Dados Genéticas/história , Genoma , Genômica/métodos , Homologia de Sequência de Aminoácidos , Alelos , Animais , Modelos Animais de Doenças , Genômica/história , Genótipo , História do Século XX , História do Século XXI , Humanos , Camundongos , Anotação de Sequência Molecular , Fenótipo , Filogenia
11.
J Biomed Semantics ; 15(1): 19, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39415214

RESUMO

BACKGROUND: Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources and necessitate substantial collaboration between domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON-AI can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstructured text sources. RESULTS: We assessed performance of DRAGON-AI on de novo term construction across ten diverse ontologies, making use of extensive manual evaluation of results. Our method has high precision for relationship generation, but has slightly lower precision than from logic-based reasoning. Our method is also able to generate definitions deemed acceptable by expert evaluators, but these scored worse than human-authored definitions. Notably, evaluators with the highest level of confidence in a domain were better able to discern flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues. CONCLUSIONS: These findings suggest DRAGON-AI's potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process.


Assuntos
Inteligência Artificial , Ontologias Biológicas , Processamento de Linguagem Natural , Armazenamento e Recuperação da Informação/métodos
12.
bioRxiv ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39345458

RESUMO

Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been collected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpreting these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically limited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phenomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a system for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) mapping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of genotype-phenotype associations from different organisms and cross-species informed variant prioritization.

13.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747660

RESUMO

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focused measurable trait data. Moreover, variations in gene expression in response to environmental disturbances even without any genetic alterations can also be associated with particular biological attributes. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.

14.
Database (Oxford) ; 20222022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35616100

RESUMO

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec.


Assuntos
Metadados , Web Semântica , Gerenciamento de Dados , Bases de Dados Factuais , Fluxo de Trabalho
15.
Dis Model Mech ; 11(3)2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29590633

RESUMO

Model organisms are vital to uncovering the mechanisms of human disease and developing new therapeutic tools. Researchers collecting and integrating relevant model organism and/or human data often apply disparate terminologies (vocabularies and ontologies), making comparisons and inferences difficult. A unified disease ontology is required that connects data annotated using diverse disease terminologies, and in which the terminology relationships are continuously maintained. The Mouse Genome Database (MGD, http://www.informatics.jax.org), Rat Genome Database (RGD, http://rgd.mcw.edu) and Disease Ontology (DO, http://www.disease-ontology.org) projects are collaborating to augment DO, aligning and incorporating disease terms used by MGD and RGD, and improving DO as a tool for unifying disease annotations across species. Coordinated assessment of MGD's and RGD's disease term annotations identified new terms that enhance DO's representation of human diseases. Expansion of DO term content and cross-references to clinical vocabularies (e.g. OMIM, ORDO, MeSH) has enriched the DO's domain coverage and utility for annotating many types of data generated from experimental and clinical investigations. The extension of anatomy-based DO classification structure of disease improves accessibility of terms and facilitates application of DO for computational research. A consistent representation of disease associations across data types from cellular to whole organism, generated from clinical and model organism studies, will promote the integration, mining and comparative analysis of these data. The coordinated enrichment of the DO and adoption of DO by MGD and RGD demonstrates DO's usability across human data, MGD, RGD and the rest of the model organism database community.


Assuntos
Doença/genética , Ontologia Genética , Anotação de Sequência Molecular , Animais , Bases de Dados Genéticas , Camundongos , Ratos , Especificidade da Espécie
19.
Lab Anim (NY) ; 49(11): 301-302, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33033408

Assuntos
Microbiota , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA