RESUMO
During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.
Assuntos
Potenciais da Membrana , Neocórtex/embriologia , Neurônios/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Progressão da Doença , Eletroporação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Tempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismoRESUMO
Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease. Analogous observations were made in the brains of Rasmussen's encephalitis patients. In this devastating CD8+ T cell-driven autoimmune disease, neuronal STAT1 phosphorylation and CCL2 expression co-clustered with infiltrating CD8+ T cells as well as phagocytes. Taken together, our findings uncover an active role of neurons in coordinating phagocyte-mediated synaptic loss and highlight neuronal STAT1 and CCL2 as critical steps in this process that are amenable to pharmacological interventions.
Assuntos
Neurônios/metabolismo , Fagocitose/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/fisiologia , Modelos Animais de Doenças , Encefalite/genética , Encefalite/imunologia , Encefalite/fisiopatologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças do Sistema Nervoso/metabolismo , Neurônios/fisiologia , Fagócitos/imunologia , Fagócitos/metabolismo , Fagocitose/imunologia , Fosforilação , Fator de Transcrição STAT1/fisiologia , Transcriptoma/genéticaRESUMO
Interconnectivity between neocortical areas is critical for sensory integration and sensorimotor transformations1-6. These functions are mediated by heterogeneous inter-areal cortical projection neurons (ICPN), which send axon branches across cortical areas as well as to subcortical targets7-9. Although ICPN are anatomically diverse10-14, they are molecularly homogeneous15, and how the diversity of their anatomical and functional features emerge during development remains largely unknown. Here we address this question by linking the connectome and transcriptome in developing single ICPN of the mouse neocortex using a combination of multiplexed analysis of projections by sequencing16,17 (MAPseq, to identify single-neuron axonal projections) and single-cell RNA sequencing (to identify corresponding gene expression). Focusing on neurons of the primary somatosensory cortex (S1), we reveal a protracted unfolding of the molecular and functional differentiation of motor cortex-projecting ([Formula: see text]) ICPN compared with secondary somatosensory cortex-projecting ([Formula: see text]) ICPN. We identify SOX11 as a temporally differentially expressed transcription factor in [Formula: see text] versus [Formula: see text] ICPN. Postnatal manipulation of SOX11 expression in S1 impaired sensorimotor connectivity and disrupted selective exploratory behaviours in mice. Together, our results reveal that within a single cortical area, different subtypes of ICPN have distinct postnatal paces of molecular differentiation, which are subsequently reflected in distinct circuit connectivities and functions. Dynamic differences in the expression levels of a largely generic set of genes, rather than fundamental differences in the identity of developmental genetic programs, may thus account for the emergence of intra-type diversity in cortical neurons.
Assuntos
Diferenciação Celular , Vias Neurais , Neurônios/citologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Axônios/fisiologia , Conectoma , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Fatores de Transcrição SOXC/genética , Fatores de Tempo , TranscriptomaRESUMO
The precise function of specialized GABAergic interneuron subtypes is required to provide appropriate synaptic inhibition for regulating principal neuron excitability and synchronization within brain circuits. Of these, parvalbumin-type (PV neuron) dysfunction is a feature of several sex-biased psychiatric and brain disorders, although, the underlying developmental mechanisms are unclear. While the transcriptional action of sex hormones generates sexual dimorphism during brain development, whether kinase signaling contributes to sex differences in PV neuron function remains unexplored. In the hippocampus, we report that gephyrin, the main inhibitory post-synaptic scaffolding protein, is phosphorylated at serine S268 and S270 in a developmentally-dependent manner in both males and females. When examining GphnS268A/S270A mice in which site-specific phosphorylation is constitutively blocked, we found that sex differences in PV neuron density in the hippocampal CA1 present in WT mice were abolished, coincident with a female-specific increase in PV neuron-derived terminals and increased inhibitory input onto principal cells. Electrophysiological analysis of CA1 PV neurons indicated that gephyrin phosphorylation is required for sexually dimorphic function. Moreover, while male and female WT mice showed no difference in hippocampus-dependent memory tasks, GphnS268A/S270A mice exhibited sex- and task-specific deficits, indicating that gephyrin phosphorylation is differentially required by males and females for convergent cognitive function. In fate mapping experiments, we uncovered that gephyrin phosphorylation at S268 and S270 establishes sex differences in putative PV neuron density during early postnatal development. Furthermore, patch-sequencing of putative PV neurons at postnatal day 4 revealed that gephyrin phosphorylation contributes to sex differences in the transcriptomic profile of developing interneurons. Therefore, these early shifts in male-female interneuron development may drive adult sex differences in PV neuron function and connectivity. Our results identify gephyrin phosphorylation as a new substrate organizing PV neuron development at the anatomical, functional, and transcriptional levels in a sex-dependent manner, thus implicating kinase signaling disruption as a new mechanism contributing to the sex-dependent etiology of brain disorders.
Assuntos
Proteínas de Transporte , Hipocampo , Interneurônios , Proteínas de Membrana , Parvalbuminas , Caracteres Sexuais , Animais , Fosforilação , Masculino , Feminino , Parvalbuminas/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos/metabolismo , Região CA1 Hipocampal/metabolismo , Camundongos TransgênicosRESUMO
Anxiety disorders are the most prevalent co-morbidity factor associated with the core domains of autism spectrum disorders (ASD). Investigations on potential common neuronal mechanisms that may explain the co-occurrence of ASD and anxiety disorders are still poorly explored. One of the key questions that remained unsolved is the role of Shank3 protein in anxiety behaviours. Firstly, we characterize the developmental trajectories of locomotor, social behaviour and anxiety traits in a mouse model of ASD. We highlight that the anxiety phenotype is a late-onset emerging phenotype in mice with a Shank3Δe4-22 mutation. Consequently, we used an shRNA strategy to model Shank3 insufficiency in the bed nucleus of the stria terminalis (BNST), a brain region exerting a powerful control on anxiety level. We found that Shank3 downregulation in the anteromedial BNST (amBNST) induced anxiogenic effects and enhanced social avoidance after aversive social defeat. Associated with these behavioural defects, we showed alteration of glutamatergic synaptic functions in the amBNST induced by Shank3 insufficiency during adolescence. Our data strongly support the role of Shank3 in the maturation of amBNST, and its key role in anxiety control. Our results may further help to pave the road on a better understanding of the neuronal mechanisms underlying anxiety disorders implicated in ASDs.
Assuntos
Núcleos Septais , Camundongos , Animais , Núcleos Septais/metabolismo , Comportamento Social , Ansiedade/metabolismo , Transtornos de Ansiedade/metabolismo , Fenótipo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismoRESUMO
Mutations in the SHANK3 gene have been recognized as a genetic risk factor for Autism Spectrum Disorder (ASD), a neurodevelopmental disease characterized by social deficits and repetitive behaviors. While heterozygous SHANK3 mutations are usually the types of mutations associated with idiopathic autism in patients, heterozygous deletion of Shank3 gene in mice does not commonly induce ASD-related behavioral deficit. Here, we used in-vivo and ex-vivo approaches to demonstrate that region-specific neonatal downregulation of Shank3 in the Nucleus Accumbens promotes D1R-medium spiny neurons (D1R-MSNs) hyperexcitability and upregulates Transient Receptor Potential Vanilloid 4 (Trpv4) to impair social behavior. Interestingly, genetically vulnerable Shank3+/- mice, when challenged with Lipopolysaccharide to induce an acute inflammatory response, showed similar circuit and behavioral alterations that were rescued by acute Trpv4 inhibition. Altogether our data demonstrate shared molecular and circuit mechanisms between ASD-relevant genetic alterations and environmental insults, which ultimately lead to sociability dysfunctions.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Comportamento Social , Canais de Cátion TRPV/genéticaRESUMO
Mutations in the RAB39B gene cause X-linked intellectual disability (XLID), comorbid with autism spectrum disorders or early Parkinson's disease. One of the functions of the neuronal small GTPase RAB39B is to drive GluA2/GluA3 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) maturation and trafficking, determining AMPAR subunit composition at glutamatergic postsynaptic neuronal terminals. Taking advantage of the Rab39b knockout murine model, we show that a lack of RAB39B affects neuronal dendritic spine refinement, prompting a more Ca2+-permeable and excitable synaptic network, which correlates with an immature spine arrangement and behavioural and cognitive alterations in adult mice. The persistence of immature circuits is triggered by increased hypermobility of the spine, which is restored by the Ca2+-permeable AMPAR antagonist NASPM. Together, these data confirm that RAB39B controls AMPAR trafficking, which in turn plays a pivotal role in neuronal dendritic spine remodelling and that targeting Ca2+-permeable AMPARs may highlight future pharmaceutical interventions for RAB39B-associated disease conditions.
Assuntos
Espinhas Dendríticas , Deficiência Intelectual , Proteínas rab de Ligação ao GTP , Animais , Cálcio , Espinhas Dendríticas/fisiologia , Camundongos , Plasticidade Neuronal , Neurônios/fisiologia , Receptores de Glutamato/fisiologia , Proteínas rab de Ligação ao GTP/fisiologiaRESUMO
Social interaction is a complex and highly conserved behavior that safeguards survival and reproductive success. Although considerable progress has been made regarding our understanding of same-sex conspecific and non-aggressive interactions, questions regarding the precise contribution of sensory cues in social approach and their specific neurobiological correlates remain open. Here, by designing a series of experiments with diverse social and object stimuli manipulations in custom-made enclosures, we first sought to deconstruct key elements of social preference as assessed by the three-chamber task. Our results highlight the importance of social olfactory cues in approach behavior. Subsequently, we interrogated whether a social odor would activate dopaminergic neurons of the Ventral Tegmental Area in the same way as a juvenile conspecific would. Employing in vivo recordings in freely behaving mice, we observed an increase of the firing only during the transition toward the juvenile mouse and not during the transition toward the object impregnated with social odor, suggesting that these two experiences are distinct and can be differentiated at the neuronal level. Moreover, using a four-choice task, we further showed that mice prefer to explore complex social stimuli compared to isolated sensory cues. Our findings offer insights toward understanding how different sensory modalities contribute to the neurobiological basis of social behavior which can be essential when studying social deficits observed in autism-, depression-, anxiety-, or schizophrenia-related mouse models.
Assuntos
Transtorno Autístico , Sinais (Psicologia) , Animais , Neurônios Dopaminérgicos , Camundongos , Comportamento Social , Área Tegmentar VentralRESUMO
During development, thalamocortical (TC) input has a critical role in the spatial delineation and patterning of cortical areas, yet the underlying cellular and molecular mechanisms that drive cortical neuron differentiation are poorly understood. In the primary (S1) and secondary (S2) somatosensory cortex, layer 4 (L4) neurons receive mutually exclusive input originating from two thalamic nuclei: the ventrobasalis (VB), which conveys tactile input, and the posterior nucleus (Po), which conveys modulatory and nociceptive input. Recently, we have shown that L4 neuron identity is not fully committed postnatally, implying a capacity for TC input to influence differentiation during cortical circuit assembly. Here we investigate whether the cell-type-specific molecular and functional identity of L4 neurons is instructed by the origin of their TC input. Genetic ablation of the VB at birth resulted in an anatomical and functional rewiring of Po projections onto L4 neurons in S1. This induced acquisition of Po input led to a respecification of postsynaptic L4 neurons, which developed functional molecular features of Po-target neurons while repressing VB-target traits. Respecified L4 neurons were able to respond both to touch and to noxious stimuli, in sharp contrast to the normal segregation of these sensory modalities in distinct cortical circuits. These findings reveal a behaviourally relevant TC-input-type-specific control over the molecular and functional differentiation of postsynaptic L4 neurons and cognate intracortical circuits, which instructs the development of modality-specific neuronal and circuit properties during corticogenesis.
Assuntos
Diferenciação Celular , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Densidade Pós-Sináptica/fisiologia , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Capsaicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Noxas/farmacologia , Optogenética , Densidade Pós-Sináptica/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/efeitos dos fármacos , Tato/fisiologia , Vibrissas/efeitos dos fármacos , Vibrissas/fisiologiaRESUMO
NMDA receptors (NMDARs) are glutamate-gated ion channels and are crucial for neuronal communication. NMDARs form tetrameric complexes that consist of several homologous subunits. The subunit composition of NMDARs is plastic, resulting in a large number of receptor subtypes. As each receptor subtype has distinct biophysical, pharmacological and signalling properties, there is great interest in determining whether individual subtypes carry out specific functions in the CNS in both normal and pathological conditions. Here, we review the effects of subunit composition on NMDAR properties, synaptic plasticity and cellular mechanisms implicated in neuropsychiatric disorders. Understanding the rules and roles of NMDAR diversity could provide new therapeutic strategies against dysfunctions of glutamatergic transmission.
Assuntos
Transtornos Mentais/fisiopatologia , Plasticidade Neuronal/fisiologia , Subunidades Proteicas/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Humanos , Modelos Biológicos , Transdução de Sinais/fisiologiaRESUMO
Potentiation of excitatory inputs onto dopamine neurons of the ventral tegmental area (VTA) induced by cocaine exposure allows remodeling of the mesocorticolimbic circuitry, which ultimately drives drug-adaptive behavior. This potentiation is mediated by changes in NMDAR and AMPAR subunit composition. It remains unknown how this synaptic plasticity affects the activity of dopamine neurons. Here, using rodents, we demonstrate that a single cocaine injection increases the firing rate and bursting activity of VTA dopamine neurons, and that these increases persist for 7 d. This enhanced activity depends on the insertion of low-conductance, Ca2+-impermeable NMDARs that contain GluN3A. Since such receptors are not capable of activating small-conductance potassium channels, the intrinsic excitability of VTA dopamine neurons increases. Activation of group I mGluRs rescues synaptic plasticity and restores small-conductance calcium-dependent potassium channel function, normalizing the firing activity of dopamine neurons. Our study characterizes a mechanism linking drug-evoked synaptic plasticity to neural activity, revealing novel targets for therapeutic interventions. SIGNIFICANCE STATEMENT: We show that cocaine-evoked synaptic changes onto ventral tegmental area (VTA) dopamine (DA) neurons leads to long-lasting increases in their burst firing. This increase is due to impaired function of Ca2+-activated small-conductance calcium-dependent potassium (SK) channels; SK channels regulate firing of VTA DA neurons, but this regulation was absent after cocaine. Cocaine exposure drives the insertion of GluN3A-containing NMDARs onto VTA DA neurons. These receptors are Ca2+-impermeable, and thus SK channels are not efficiently activated by synaptic activity. In GluN3A knock-out mice, cocaine did not alter SK channel function or VTA DA neuron firing. This study directly links synaptic changes to increased intrinsic excitability of VTA DA neurons after cocaine, and explains how acute cocaine induces long-lasting remodeling of the mesolimbic DA system.
Assuntos
Cálcio/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Masculino , Glicoproteínas de Membrana/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos Knockout , Plasticidade Neuronal , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/citologiaRESUMO
Several mutations within SHANK3 gene have been identified in Autism Spectrum Disorder patients and several studies have now started to show that those mutations could impact different brain circuits leading to the heterogeneity of the disease. Here we show that, compared to a mouse model lacking SHANK3 proline-rich containing isoforms, in a mouse model lacking SHANK3 ANK(yrin)-domain containing isoforms, the excitatory synaptic transmission within the Ventral Tegmental Area is not affected. We discuss about the possibility that different domains of SHANK3 are involved in regulating the synapses in a circuit-specific manner resulting in different behavioral and synaptic phenotypes.
Assuntos
Transtorno do Espectro Autista/genética , Neurônios Dopaminérgicos/fisiologia , Potenciais Pós-Sinápticos Excitadores , Proteínas do Tecido Nervoso/genética , Área Tegmentar Ventral/fisiologia , Animais , Transtorno do Espectro Autista/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Deleção de Genes , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de AMPA/química , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismoRESUMO
The ventral tegmental area is a heterogeneous brain structure that plays a central role in rewarding and aversive experience processing. Studies suggest that several subpopulations within the ventral tegmental area form subcircuits that are differentially involved in rewarding and aversive experiences and that could be individually affected in several neuropsychiatric disorders. Here, we focus on the recent advances concerning the functional description of the three major neuronal subpopulations, in terms of neurotransmitter release, their input and output structures, and their role in controlling specific behavioral outcomes. Several subpopulations within the Ventral Tegmental Area form subcircuits that are differentially involved in rewarding and aversive experiences and that could be individually affected in several neuropsychiatric disorders. We focus on the recent advances concerning the functional description of the three major neuronal subpopulations, their input and output structures, and their role in controlling specific behavioral outcomes. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Assuntos
Aprendizagem da Esquiva/fisiologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Recompensa , Área Tegmentar Ventral/metabolismo , Animais , HumanosRESUMO
Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific changes in the subunit composition of NMDA-type glutamate receptors (NMDARs). Among these, the nonconventional NMDAR subunit GluN3A has been suggested to play a role as a molecular brake in synaptic maturation. We tested here this hypothesis using confocal time-lapse imaging in rat hippocampal organotypic slices and assessed the role of GluN3A-containing NMDARs on spine dynamics. We found that overexpressing GluN3A reduced spine density over time, increased spine elimination, and decreased spine stability. The effect of GluN3A overexpression could be further enhanced by using an endocytosis-deficient GluN3A mutant and reproduced by silencing the adaptor protein PACSIN1, which prevents the endocytosis of endogenous GluN3A. Conversely, silencing of GluN3A reduced spine elimination and favored spine stability. Moreover, reexpression of GluN3A in more mature tissue reinstated an increased spine pruning and a low spine stability. Mechanistically, the decreased stability in GluN3A overexpressing neurons could be linked to a failure of plasticity-inducing protocols to selectively stabilize spines and was dependent on the ability of GluN3A to bind the postsynaptic scaffold GIT1. Together, these data provide strong evidence that GluN3A prevents the activity-dependent stabilization of synapses thereby promoting spine pruning, and suggest that GluN3A expression operates as a molecular signal for controlling the extent and timing of synapse maturation.
Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Hipocampo/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Hipocampo/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , RatosRESUMO
G-protein-coupled inwardly rectifying potassium (GIRK) channels contribute to the resting membrane potential of many neurons, including dopamine (DA) neurons in the ventral tegmental area (VTA). VTA DA neurons are bistable, firing in two modes: one characterized by bursts of action potentials, the other by tonic firing at a lower frequency. Here we provide evidence that these firing modes drive bidirectional plasticity of GIRK channel-mediated currents. In acute midbrain slices of mice, we observed that in vitro burst activation of VTA DA neurons potentiated GIRK currents whereas tonic firing depressed these currents. This plasticity was not specific to the metabotropic receptor activating the GIRK channels, as direct activation of GIRK channels by nonhydrolyzable GTP also potentiated the currents. The plasticity of GIRK currents required NMDA receptor and CaMKII activation, and involved protein trafficking through specific PDZ domains of GIRK2c and GIRK3 subunit isoforms. Prolonged tonic firing may thus enhance the probability to switch into burst-firing mode, which then potentiates GIRK currents and favors the return to baseline. In conclusion, activity-dependent GIRK channel plasticity may represent a slow destabilization process favoring the switch between the two firing modes of VTA DA neurons.
Assuntos
Potenciais de Ação , Neurônios Dopaminérgicos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Plasticidade Neuronal , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Guanosina Trifosfato/metabolismo , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Transporte Proteico , Receptores de N-Metil-D-Aspartato/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologiaRESUMO
Most of us engage in social interactions on a daily basis and the repertoire of social behaviors we acquire during development and later in life are incredibly varied. However, in many neurodevelopmental disorders, including autism spectrum disorders (ASDs), social behavior is severely compromised and indeed this represents a key diagnostic component for such conditions. From genetic association studies, it is increasingly apparent that genes identified as altered in individuals with ASDs often encode synaptic proteins. Moreover, these synaptic proteins typically serve to scaffold group-I metabotropic glutamate receptors (group-I mGluRs) and ionotropic glutamate receptors (iGluRs; AMPARs and NMDARs), or to enable group-I mGluR to iGluR crosstalk via protein synthesis. Here we aim to explore the possibility of a causal link between altered function of such synaptic proteins and impaired social behaviors that feature in neurodevelopmental disorders, such as ASDs. We review the known synaptic function and role in social behaviors of selected post-synaptic structural proteins (Shank, SAPAP and neuroligin) and regulators of protein synthesis (TSC1/2, FMRP and PTEN). While manipulations of proteins involved in group-I mGluR and iGluR scaffolding or crosstalk frequently lead to profound alterations in synaptic function and one or more components of social behavior, the neuronal circuits responsible for impairments in specific social behaviors are often poorly defined. We argue for an improved understanding of the neuronal circuits underlying specific social behaviors to aid the development of new ASD therapies.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/metabolismo , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Humanos , Receptores de AMPA/genética , Receptores de Glutamato Metabotrópico/genética , Receptores de N-Metil-D-Aspartato/genética , Sinapses/fisiologiaRESUMO
Parental behaviors secure the well-being of newborns and concomitantly limit negative affective states in adults, which emerge when coping with neonatal distress becomes challenging. Whether negative-affect-related neuronal circuits orchestrate parental actions is unknown. Here, we identify parental signatures in lateral habenula neurons receiving bed nucleus of stria terminalis innervation (BNSTLHb). We find that LHb neurons of virgin female mice increase their activity following pup distress vocalization and are necessary for pup-call-driven aversive behaviors. LHb activity rises during pup retrieval, a behavior worsened by LHb inactivation. Intersectional cell identification and transcriptional profiling associate BNSTLHb cells to parenting and outline a gene expression in female virgins similar to that in mothers but different from that in non-parental virgin male mice. Finally, tracking and manipulating BNSTLHb cell activity demonstrates their specificity for encoding negative affect and pup retrieval. Thus, a negative affect neural circuit processes newborn distress signals and may limit them by guiding female parenting.
Assuntos
Habenula , Neurônios , Camundongos , Animais , Masculino , Feminino , Neurônios/fisiologia , Aprendizagem da Esquiva , Afeto , Habenula/fisiologiaRESUMO
In this issue of Neuron, Bossi, Dhanasobhon, and colleagues uncover the functional relevance of GluN1/GluN3A excitatory glycine receptors (eGlyRs) in the neocortex and amygdala. This study provides exciting new insights into the role of unconventional eGlyRs in brain function.
Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Receptores de Glicina , Glicina , Neurônios , Receptores de N-Metil-D-Aspartato/fisiologiaRESUMO
Social interactions are motivated behaviors that, in many species, facilitate learning. However, how the brain encodes the reinforcing properties of social interactions remains unclear. In this study, using in vivo recording in freely moving mice, we show that dopamine (DA) neurons of the ventral tegmental area (VTA) increase their activity during interactions with an unfamiliar conspecific and display heterogeneous responses. Using a social instrumental task, we then show that VTA DA neuron activity encodes social prediction error and drives social reinforcement learning. Thus, our findings suggest that VTA DA neurons are a neural substrate for a social learning signal that drives motivated behavior.