Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 11(10): 8864-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400273

RESUMO

In the present paper, the effect of residual stress on the mechanical behavior of thin hard coatings has been investigated by a new methodology based on the combined use of focused ion beam (FIB) micro-machining techniques and nanoindentation testing. Surface elastic residual stress were determined by nanoindentation testing on Focused Ion Beam (FIB) milled micro-pillars. The average residual stress present in a 3.8 microm CAE-PVD TiN coating on WC-Co substrate was calculated by the comparison of two different sets of load-depth curves, the first one obtained at centre of stress relieved pillars, the second one on the undisturbed (residually stressed) surface. Results for stress measurement were in good agreement with the estimate obtained by XRD (sin2 psi method) analysis on the same sample, adopting the same elastic constants. In addition, nanoindentation on stress relieved pillars also allowed to perform a more accurate evaluation of elastic modulus and hardness of the coating. The effect of residual stress on crack propagation modes was quantitatively analyzed by high-load nanoindentation and application of energy methods for fracture toughness evaluation. It is found that compressive residual stress plays a relevant role in determining the fracture behavior and failure modes of the coating. Finally, Microstructural observations of the deformation mechanisms of the TiN coating were performed by TEM analysis on the cross section of the indentation, obtained by FIB lamella thinning. Results showed that plastic deformation at the nanoscale essentially occurs by formation of shear bands inside the columnar grains, independently of residual stress. A transition between intra-granular shear deformation and columnar grain sliding is also observed as a function of the applied load.

2.
J Nanosci Nanotechnol ; 11(10): 8754-62, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400255

RESUMO

Titanium is the most widely used material in orthopaedic and dental implantoprosthesis due to its superior physical properties and enhanced biocompatibility due to the spontaneous formation of a passivating layer of titanium oxides which, however, does not form good chemical bonds with bone and tends to brake exposing bulk titanium to harsh body fluids releasing titanium particles which may prime an inflammation response and a fibrotic tissue production. In order to avoid these possible problems and to enhance the biocompatibility of titanium implants, modifications of titanium surfaces by many different materials as hydroxyapatite, titanium nitride, titanium oxide and titanium carbide have been proposed. The latter is shown to be an efficient protection for the titanium implant in the harsh conditions of biological tissues and, compared to untreated titanium, acting like an osteoblast stimulation factor increasing in vitro production of proteins involved in osteogenesis. These results were confirmed by in vivo experiments in rabbits: implants covered by the titanium carbide (TiC) layer were faster and better osseointegrated than untreated titanium implants. The TiC layer was deposited by a Pulsed Laser Deposition (PLD) device which allowed only one deposition per cycle, shown to be unsuitable for industrial applications. Therefore the main objective of the present work was to replace PLD process with an Ion Plating Plasma Assisted (IPPA) deposition process, which is suitable for industrial upgrading. By this technique, nanostructured TiOx-TiCy-C has been deposited on titanium after sandblasting with 120 micron zirconia spheres. XPS analyses revealed the presence of about 33% carbon (50% of which is present as free carbon), 39% oxygen and 28% titanium (37% of which is bound to carbon to form TiC and 63% is bound to oxygen to form non stoichiometric oxides). Surface mechanical response of as-deposited coatings has been performed by nanoindentation techniques. Focused Ion Beam micrographs showed bigger differences on the obtained nanostructure compared to the PLD coating structure; in vitro tests confirm for IPPA produced coatings an improvement in stimulating osteoblasts to produce mRNA's of proteins involved in the ossification process, this latter case they resulted to be faster and more efficient. The proposed treatement is expected to improve the good results obtained by PLD, in vivo as well.


Assuntos
Osso e Ossos/citologia , Materiais Revestidos Biocompatíveis/química , Titânio/química , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Linhagem Celular , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Dureza , Humanos , Íons/metabolismo , Lasers , Microesferas , Nanoestruturas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Coelhos , Propriedades de Superfície , Titânio/metabolismo , Titânio/farmacologia , Zircônio/química
3.
J Phys Chem B ; 123(7): 1679-1687, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30702893

RESUMO

This article reports the design, construction, and first use of an experimental device consisting of a specially designed vacuum chamber equipped with a reactive sputtering magnetron (RSM) to be used for controlled deposition of thin films on a Si(100) flat substrate. The setup was designed to allow for in situ and real-time recordings of X-ray diffraction patterns during the growth of the deposited films and was installed in the X-ray diffraction and spectroscopy beamline emerging from a superconducting wiggler source at the Brazilian Synchrotron Light Laboratory. The first use of the RSM setup was an in situ and real-time X-ray diffraction study of processes of growth of multilayered aluminum nitride thin films, whereas the operation parameters of the reactor were sequentially changed. This sequential process led to the development of multilayered films. Alternate variations in chamber pressure and magnetron power density allowed us to obtain thin films composed of several micrometer thick layers, with alternate amorphous and (10·0), (00·2), or (10·1) textured polycrystalline structures.

4.
Dent Mater ; 31(11): 1396-405, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26365988

RESUMO

OBJECTIVES: The production of fixed partial dentures (FPDs) induces complex residual stress profiles, due to both the thermal expansion coefficient mismatch between the veneering ceramic and the framework and to the thermal gradients occurring during the final cooling. Detailed knowledge of residual stress distributions in the veneering ceramics is important to understand the interface phenomena with the framework and the consequences of the different firing systems. The first objective of this study was to analyse the residual stress distribution in heat-pressed ceramic on zirconia core with micrometer spatial resolution, with also a focus on the stress at the interface versus porcelain-fused-to-metal samples. The second purpose was to correlate the residual stress with the fracture toughness. METHODS: The micron-scale focused ion beam (FIB) ring-core method was used to map the residual stress over the cross-sections of the veneering ceramics. The methodology is based on FIB micro-milling of annular trenches, combined with high-resolution in situ scanning electron microscope (SEM) imaging, a full field strain analysis by digital image correlation (DIC) and numerical models for residual stress calculation. Fracture toughness was evaluated by using high load Vickers indentation and hardness/modulus were measured by nanoindentation testing also across the interfaces. RESULTS: Both prosthetic systems showed a compressive stress at the ceramic surface on a micron-scale. The stress profile for porcelain fused to metal (PFM) showed a transition to tensile stress at the half of the layer, whilst the stress in proximity of the interface was more compressive in both the cases. Residual stress on a micron scale are higher in magnitude than the corresponding macro-scale values reported in the literature, due to the stress relaxation given, at larger scales, by micro-voids and cracks. The stress field was directly correlated with the indentation fracture toughness, which was higher in those areas where the compressive stress is greater. Stress analysis in correspondence of interfacial porosity for the zirconia sample also showed that micro-defects could induce local modifications of the residual stress field, which may even locally generate a tensile stress state. SIGNIFICANCE: The interfacial stress in dental systems was analysed on a micron scale and can give further insights into the process/property/performance correlation for this class of materials. In particular, interfacial and/or local modifications of the residual stress are expected to have a significant influence on crack nucleation mechanism in correspondence of micro-defects. A direct correlation between residual stress distribution and fracture toughness was proposed. It is noteworthy that the method can be used to study real crowns and bridges. In fact, complex geometries can be easily analysed by this procedure.


Assuntos
Porcelana Dentária , Facetas Dentárias , Zircônio , Cerâmica , Análise do Estresse Dentário , Temperatura Alta , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície
5.
J Biomech ; 33(9): 1153-7, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10854890

RESUMO

Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.


Assuntos
Cabeça do Fêmur/fisiologia , Animais , Fenômenos Biomecânicos , Bovinos , Cabeça do Fêmur/ultraestrutura , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Resistência à Tração
6.
Bull Group Int Rech Sci Stomatol Odontol ; 50(3): 1-10, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22709611

RESUMO

Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 µm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.


Assuntos
Materiais Dentários/química , Porcelana Dentária/química , Microanálise por Sonda Eletrônica/métodos , Imageamento Tridimensional/métodos , Ligas Metalo-Cerâmicas/química , Microscopia Eletrônica de Varredura/métodos , Zircônio/química , Desenho Assistido por Computador , Cristalização , Facetas Dentárias , Gálio/química , Ligas de Ouro/química , Humanos , Índio/química , Óxidos/química , Paládio/química , Silício/química , Prata/química , Propriedades de Superfície , Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA