Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 7(12): e1002423, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22242002

RESUMO

Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3(K9L) or hH3(K9R)) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3(WT)). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9.


Assuntos
Metilação de DNA/genética , Genes Letais/genética , Histonas/genética , Neurospora crassa/genética , Acetilação , Substituição de Aminoácidos , Aminoácidos/genética , Eucromatina/genética , Genes Recessivos , Heterocromatina/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Mutação , Neurospora crassa/metabolismo , Fosforilação
2.
Mol Biol Cell ; 17(10): 4576-83, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16914525

RESUMO

Blue light-induced transcription in Neurospora crassa is regulated by the White Collar-1 (WC-1) photoreceptor. We report that residue K14 of histone H3 associated with the light-inducible albino-3 (al-3) promoter becomes transiently acetylated after photoinduction. This acetylation depends on WC-1. The relevance of this chromatin modification was directly evaluated in vivo by construction of a Neurospora strain with a mutated histone H3 gene (hH3(K14Q)). This strain phenocopies a wc-1 blind mutant and shows a strong reduction of light-induced transcriptional activation of both al-3 and vivid (vvd), another light-inducible gene. We mutated Neurospora GCN Five (ngf-1), which encodes a homologue of the yeast HAT Gcn5p, to generate a strain impaired in H3 K14 acetylation and found that it was defective in photoinduction. Together, our findings reveal a direct link between histone modification and light signaling in Neurospora and contribute to the developing understanding of the molecular mechanisms operating in light-inducible gene activation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Fator de Crescimento Neural/farmacologia , Neurospora crassa/metabolismo , Fatores de Transcrição/fisiologia , Acetilação , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Genes Reporter , Histona Acetiltransferases/fisiologia , Luz , Lisina , Dados de Sequência Molecular , Neurospora crassa/fisiologia , Células Fotorreceptoras , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA