Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336291

RESUMO

RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.


Assuntos
Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Vertebrados , Animais , Humanos , Camundongos , Ratos , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Fosforilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Especificidade da Espécie , Vertebrados/genética , Galinhas/genética
2.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825419

RESUMO

HspA1A, a molecular chaperone, translocates to the plasma membrane (PM) of stressed and cancer cells. This translocation results in HspA1A's cell-surface presentation, which renders tumors radiation insensitive. To specifically inhibit the lipid-driven HspA1A's PM translocation and devise new therapeutics it is imperative to characterize the unknown HspA1A's lipid-binding regions and determine the relationship between the chaperone and lipid-binding functions. To elucidate this relationship, we determined the effect of phosphatidylserine (PS)-binding on the secondary structure and chaperone functions of HspA1A. Circular dichroism revealed that binding to PS resulted in minimal modification on HspA1A's secondary structure. Measuring the release of inorganic phosphate revealed that PS-binding had no effect on HspA1A's ATPase activity. In contrast, PS-binding showed subtle but consistent increases in HspA1A's refolding activities. Furthermore, using a Lysine-71-Alanine mutation (K71A; a null-ATPase mutant) of HspA1A we show that although K71A binds to PS with affinities similar to the wild-type (WT), the mutated protein associates with lipids three times faster and dissociates 300 times faster than the WT HspA1A. These observations suggest a two-step binding model including an initial interaction of HspA1A with lipids followed by a conformational change of the HspA1A-lipid complex, which accelerates the binding reaction. Together these findings strongly support the notion that the chaperone and lipid-binding activities of HspA1A are dependent but the regions mediating these functions do not overlap and provide the basis for future interventions to inhibit HspA1A's PM-translocation in tumor cells, making them sensitive to radiation therapy.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Lipossomos/metabolismo , Fosfatidilserinas/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Dicroísmo Circular , Proteínas de Choque Térmico HSP70/genética , Lipossomos/química , Lisina/genética , Camundongos , Chaperonas Moleculares/metabolismo , Mutação , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Ligação Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA