Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 596(7872): 393-397, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34349265

RESUMO

Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.


Assuntos
Envelhecimento/genética , Ovário/metabolismo , Adulto , Alelos , Animais , Osso e Ossos/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase do Ponto de Checagem 2/genética , Diabetes Mellitus Tipo 2 , Dieta , Europa (Continente)/etnologia , Ásia Oriental/etnologia , Feminino , Fertilidade/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Envelhecimento Saudável/genética , Humanos , Longevidade/genética , Menopausa/genética , Menopausa Precoce/genética , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Insuficiência Ovariana Primária/genética , Útero
2.
Cell ; 147(7): 1459-72, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22169038

RESUMO

SIRT1 is a NAD(+)-dependent deacetylase that governs a number of genetic programs to cope with changes in the nutritional status of cells and organisms. Behavioral responses to food abundance are important for the survival of higher animals. Here we used mice with increased or decreased brain SIRT1 to show that this sirtuin regulates anxiety and exploratory drive by activating transcription of the gene encoding the monoamine oxidase A (MAO-A) to reduce serotonin levels in the brain. Indeed, treating animals with MAO-A inhibitors or selective serotonin reuptake inhibitors (SSRIs) normalized anxiety differences between wild-type and mutant animals. SIRT1 deacetylates the brain-specific helix-loop-helix transcription factor NHLH2 on lysine 49 to increase its activation of the MAO-A promoter. Both common and rare variations in the SIRT1 gene were shown to be associated with risk of anxiety in human population samples. Together these data indicate that SIRT1 mediates levels of anxiety, and this regulation may be adaptive in a changing environment of food availability.


Assuntos
Ansiedade/genética , Encéfalo/metabolismo , Comportamento Exploratório , Monoaminoxidase/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sequência de Aminoácidos , Animais , Comportamento Animal , Impulso (Psicologia) , Regulação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Monoaminoxidase/química , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
3.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37137228

RESUMO

SUMMARY: 'PascalX' is a Python library providing fast and accurate tools for mapping SNP-wise GWAS summary statistics. Specifically, it allows for scoring genes and annotated gene sets for enrichment signals based on data from, both, single GWAS and pairs of GWAS. The gene scores take into account the correlation pattern between SNPs. They are based on the cumulative density function of a linear combination of χ2 distributed random variables, which can be calculated either approximately or exactly to high precision. Acceleration via multithreading and GPU is supported. The code of PascalX is fully open source and well suited as a base for method development in the GWAS enrichment test context. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/BergmannLab/PascalX and archived under doi://10.5281/zenodo.4429922. A user manual with usage examples is available at https://bergmannlab.github.io/PascalX/.


Assuntos
Estudo de Associação Genômica Ampla , Bibliotecas , Biblioteca Gênica , Software , Polimorfismo de Nucleotídeo Único
4.
J Fish Dis ; : e13960, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708552

RESUMO

In this issue, we established rapid, cost-effective, and simple detection methods including recombines polymerase amplification with lateral flow dipstick (RPA-LFD) and real-time RPA for cyprinid herpesvirus 3(CyHV-3), and evaluated their sensitivity, specificity, and applicability, the real-time RPA method could achieve sensitive diagnosis of CyHV-3 within 1.3 copies per reaction, respectively. The real-time RPA method is 10-fold more sensitive than RPA-LFD method. The exact number of CyHV-3 can be calculated in each sample by real-time RPA. The sera from koi also can be tested in these methods. In addition, no cross-reaction was observed with other related pathogens, including carp oedema virus (CEV), spring viraemia of carp virus (SVCV), cyprinid herpesvirus 1(CyHV-1), cyprinid herpesvirus 2(CyHV-2), type I grass carp reovirus (GCRV-I), type II GCRV (GCRV-II), type III GCRV (GCRV-III), and Aeromonas hydrophila.

5.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897509

RESUMO

Long intergenic noncoding RNAs (lincRNAs) represent a large fraction of transcribed loci in eukaryotic genomes. Although classified as noncoding, most lincRNAs contain open reading frames (ORFs), and it remains unclear why cytoplasmic lincRNAs are not or very inefficiently translated. Here, we analyzed signatures of hindered translation in lincRNA sequences from five eukaryotes, covering a range of natural selection pressures. In fission yeast and Caenorhabditis elegans, that is, species under strong selection, we detected significantly shorter ORFs, a suboptimal sequence context around start codons for translation initiation, and trinucleotides ("codons") corresponding to less abundant tRNAs than for neutrally evolving control sequences, likely impeding translation elongation. For human, we detected signatures for cell-type-specific hindrance of lincRNA translation, in particular codons in abundant cytoplasmic lincRNAs corresponding to lower expressed tRNAs than control codons, in three out of five human cell lines. We verified that varying tRNA expression levels between cell lines are reflected in the amount of ribosomes bound to cytoplasmic lincRNAs in each cell line. We further propose that codons at ORF starts are particularly important for reducing ribosome-binding to cytoplasmic lincRNA ORFs. Altogether, our analyses indicate that in species under stronger selection lincRNAs evolved sequence features generally hindering translation and support cell-type-specific hindrance of translation efficiency in human lincRNAs. The sequence signatures we have identified may improve predicting peptide-coding and genuine noncoding lincRNAs in a cell type.


Assuntos
RNA Longo não Codificante , Seleção Genética , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Eucariotos/genética , Humanos , Fases de Leitura Aberta , RNA Longo não Codificante/genética , RNA não Traduzido , Schizosaccharomyces/genética
6.
PLoS Comput Biol ; 18(9): e1010517, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156592

RESUMO

Proximal genetic variants are frequently correlated, implying that the corresponding effect sizes detected by genome-wide association studies (GWAS) are also not independent. Methods already exist to account for this when aggregating effects from a single GWAS across genes or pathways. Here we present a rigorous yet fast method for detecting genes with coherent association signals for two traits, facilitating cross-GWAS analyses. To this end, we devised a new significance test for the covariance of datapoints not drawn independently but with a known inter-sample covariance structure. We show that the distribution of its test statistic is a linear combination of χ2 distributions with positive and negative coefficients. The corresponding cumulative distribution function can be efficiently calculated with Davies' algorithm at high precision. We apply this general framework to test for dependence between SNP-wise effect sizes of two GWAS at the gene level. We extend this test to detect also gene-wise causal links. We demonstrate the utility of our method by uncovering potential shared genetic links between the severity of COVID-19 and (1) being prescribed class M05B medication (drugs affecting bone structure and mineralization), (2) rheumatoid arthritis, (3) vitamin D (25OHD), and (4) serum calcium concentrations. Our method detects a potential role played by chemokine receptor genes linked to TH1 versus TH2 immune response, a gene related to integrin beta-1 cell surface expression, and other genes potentially impacting the severity of COVID-19. Our approach will be useful for similar analyses involving datapoints with known auto-correlation structures.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , COVID-19/genética , Cálcio , Humanos , Integrinas , Polimorfismo de Nucleotídeo Único/genética , Receptores de Quimiocinas , Vitamina D
7.
Nature ; 542(7640): 186-190, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28146470

RESUMO

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


Assuntos
Estatura/genética , Frequência do Gene/genética , Variação Genética/genética , Proteínas ADAMTS/genética , Adulto , Alelos , Moléculas de Adesão Celular/genética , Feminino , Genoma Humano/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosaminoglicanos/biossíntese , Proteínas Hedgehog/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores Reguladores de Interferon/genética , Subunidade alfa de Receptor de Interleucina-11/genética , Masculino , Herança Multifatorial/genética , NADPH Oxidase 4 , NADPH Oxidases/genética , Fenótipo , Proteína Plasmática A Associada à Gravidez/metabolismo , Pró-Colágeno N-Endopeptidase/genética , Proteoglicanas/biossíntese , Proteólise , Receptores Androgênicos/genética , Somatomedinas/metabolismo
8.
J Fish Dis ; 46(8): 873-886, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227769

RESUMO

Koi herpesvirus (KHV) is the causative agent of a koi herpesvirus disease (KHVD) inducing high mortality rates in common carp and koi (Cyprinus carpio). No widespread effective vaccination strategy has been implemented yet, which is partly due to side effects of the immunized fish. In this study, we present an evaluation of the purification of infectious KHV from host cell protein and DNA, using the steric exclusion chromatography. The method is related to conventional polyethylene glycol (PEG) precipitation implemented in a chromatographic set-up and has been applied for infectious virus particle purification with high recoveries and impurity removal. Here, we achieved a yield of up to 55% of infectious KHV by using 12% PEG (molecular weight of 6 kDa) at pH 7.0. The recoveries were higher when using chromatographic cellulose membranes with 3-5 µm pores in diameter instead of 1 µm. The losses were assumed to originate from dense KHV precipitates retained on the membranes. Additionally, the use of >0.6 M NaCl was shown to inactivate infectious KHV. In summary, we propose a first step towards a purification procedure for infectious KHV with a possible implementation in fish vaccine manufacturing.


Assuntos
Carpas , Doenças Transmissíveis , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Doenças dos Peixes/prevenção & controle , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Cromatografia em Gel
9.
J Am Soc Nephrol ; 33(3): 511-529, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228297

RESUMO

BACKGROUND: Uromodulin, the most abundant protein excreted in normal urine, plays major roles in kidney physiology and disease. The mechanisms regulating the urinary excretion of uromodulin remain essentially unknown. METHODS: We conducted a meta-analysis of genome-wide association studies for raw (uUMOD) and indexed to creatinine (uUCR) urinary levels of uromodulin in 29,315 individuals of European ancestry from 13 cohorts. We tested the distribution of candidate genes in kidney segments and investigated the effects of keratin-40 (KRT40) on uromodulin processing. RESULTS: Two genome-wide significant signals were identified for uUMOD: a novel locus (P 1.24E-08) over the KRT40 gene coding for KRT40, a type 1 keratin expressed in the kidney, and the UMOD-PDILT locus (P 2.17E-88), with two independent sets of single nucleotide polymorphisms spread over UMOD and PDILT. Two genome-wide significant signals for uUCR were identified at the UMOD-PDILT locus and at the novel WDR72 locus previously associated with kidney function. The effect sizes for rs8067385, the index single nucleotide polymorphism in the KRT40 locus, were similar for both uUMOD and uUCR. KRT40 colocalized with uromodulin and modulating its expression in thick ascending limb (TAL) cells affected uromodulin processing and excretion. CONCLUSIONS: Common variants in KRT40, WDR72, UMOD, and PDILT associate with the levels of uromodulin in urine. The expression of KRT40 affects uromodulin processing in TAL cells. These results, although limited by lack of replication, provide insights into the biology of uromodulin, the role of keratins in the kidney, and the influence of the UMOD-PDILT locus on kidney function.


Assuntos
Estudo de Associação Genômica Ampla , Rim , Creatinina , Humanos , Polimorfismo de Nucleotídeo Único , Isomerases de Dissulfetos de Proteínas/genética , Uromodulina/genética
10.
BMC Bioinformatics ; 23(1): 147, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459101

RESUMO

BACKGROUND: Over the past decade, experimental procedures such as metabolic labeling for determining RNA turnover rates at the transcriptome-wide scale have been widely adopted and are now turning to single cell measurements. Several computational methods to estimate RNA synthesis, processing and degradation rates from such experiments have been suggested, but they all require several RNA sequencing samples. Here we present a method that can estimate those three rates from a single sample. METHODS: Our method relies on the analytical solution to the Zeisel model of RNA dynamics. It was validated on metabolic labeling experiments performed on mouse embryonic stem cells. Resulting degradation rates were compared both to previously published rates on the same system and to a state-of-the-art method applied to the same data. RESULTS: Our method is computationally efficient and outputs rates that correlate well with previously published data sets. Using it on a single sample, we were able to reproduce the observation that dynamic biological processes tend to involve genes with higher metabolic rates, while stable processes involve genes with lower rates. This supports the hypothesis that cells control not only the mRNA steady-state abundance, but also its responsiveness, i.e., how fast steady state is reached. Moreover, degradation rates obtained with our method compare favourably with the other tested method. CONCLUSIONS: In addition to saving experimental work and computational time, estimating rates for a single sample has several advantages. It does not require an error-prone normalization across samples and enables the use of replicates to estimate uncertainty and assess sample quality. Finally the method and theoretical results described here are general enough to be useful in other contexts such as nucleotide conversion methods and single cell metabolic labeling experiments.


Assuntos
RNA , Transcriptoma , Animais , Camundongos , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos
11.
Nat Methods ; 16(9): 843-852, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31471613

RESUMO

Many bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the 'Disease Module Identification DREAM Challenge', an open competition to comprehensively assess module identification methods across diverse protein-protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.


Assuntos
Biologia Computacional/métodos , Doença/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Algoritmos , Perfilação da Expressão Gênica , Humanos , Fenótipo , Mapas de Interação de Proteínas
12.
Microb Pathog ; 166: 105510, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421555

RESUMO

Tilapia lake virus disease (TiLVD) caused by Tilapia lake virus (TiLV) is a great threat to the global tilapia culture industry. Effective prevention and control strategies have not been developed due to limited basic research of pathogenesis of TiLVD. Cell lines from different fish species have been found to be permissive to TiLV infection. In the current study, we comprehensively analyzed TiLV susceptibilities to 10 permanent growing fish cell lines. We found that the highest viral titers were generated onto TiB cells originated from the tilapia species Oreochromis mossambicus, MSF from the largemouth bass Micropterus salmoides, CAMK from the hybrid snakehead Channa argus × Channa maculata and SS derived from the perch species Siniperca chuatsi. Viral copy numbers from these four cell lines ranged from 4 × 107 copies/µL to 4.6 × 108 copies/µL. Confocal immunofluorescent microscopy also indicated that all 10 cell lines can support varying degrees of viral infection and replication. TiLV particles can be observed in cells from randomly selected three fish species using electron microscope. This study will assist in research and development of prevention and control of TiLVD.


Assuntos
Doenças dos Peixes , Vírus de RNA , Tilápia , Vírus , Animais , Linhagem Celular , Vírus de DNA , Suscetibilidade a Doenças
13.
J Fish Dis ; 45(7): 1033-1043, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475515

RESUMO

Largemouth bass ranavirus disease (LMBVD) caused by largemouth bass ranavirus (LMBV) has resulted in severe economic losses in the largemouth bass (Micropterus salmoides) farming industry in China. Early and accurate diagnosis is the key measure for the prevention and control of LMBVD. In this study, a quantitative polymerase chain reaction (qPCR) and a real-time recombinase-aided amplification (real-time RAA) assay were established for the detection of LMBV. The sensitivity and specificity of these two methods, and the efficacy for detection of LMBV from clinical samples were also evaluated. Results showed that the real-time RAA reaction was completed in <30 min at 39℃ with a detection limit of 58.3 copies, while qPCR reaction required 60 min with a detection limit of 5.8 copies. Both methods were specific for LMBV, where no cross-reactions observed with the other tested fish pathogens. Comparing the amplification results of both assays to the results obtained by virus isolation using 53 clinical tissue samples, results showed that the clinical sensitivity of real-time RAA and qPCR were 93.75% and 100% respectively, and the clinical specificity of both were 100%. Our results showed that qPCR is more suitable for quantitative analysis and accurate detection of LMBV in the laboratory, while real-time RAA is more suitable as a point-of-care diagnostic tool for on-site detection and screening of LMBV under farm conditions and in poorly equipped laboratories.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/diagnóstico , Ranavirus/genética , Recombinases , Sensibilidade e Especificidade
14.
J Proteome Res ; 20(11): 5103-5114, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34699229

RESUMO

Gene products can affect the concentrations of small molecules (aka "metabolites"), and conversely, some metabolites can modulate the concentrations of gene transcripts. While many specific instances of this interplay have been revealed, a global approach to systematically uncover human gene-metabolite interactions is still lacking. We performed a metabolome- and transcriptome-wide association study to identify genes influencing the human metabolome using untargeted metabolome features, extracted from 1H nuclear magnetic resonance spectroscopy (NMR) of urine samples, and gene expression levels, quantified from RNA-Seq of lymphoblastoid cell lines (LCL) from 555 healthy individuals. We identified 20 study-wide significant associations corresponding to 15 genes, of which 5 associations (with 2 genes) were confirmed with follow-up NMR data. Using metabomatching, we identified the metabolites corresponding to metabolome features associated with the genes, namely, N-acetylated compounds with ALMS1 and trimethylamine (TMA) with HPS1. Finally, Mendelian randomization analysis supported a potential causal link between the expression of genes in both the ALMS1- and HPS1-loci and their associated metabolite concentrations. In the case of HPS1, we additionally observed that TMA concentration likely exhibits a reverse causal effect on HPS1 expression levels, indicating a negative feedback loop. Our study highlights how the integration of metabolomics, gene expression, and genetic data can pinpoint causal genes modulating metabolite concentrations.


Assuntos
Líquidos Corporais , Transcriptoma , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/genética , Metabolômica/métodos
15.
J Am Chem Soc ; 143(37): 15120-15130, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34520206

RESUMO

It is well-accepted that gene expression is heavily influenced by RNA structure. For instance, stem-loops and G-quadruplexes (rG4s) are dynamic motifs in mRNAs that influence gene expression. Adenosine-to-inosine (A-to-I) editing is a common chemical modification of RNA which introduces a nucleobase that is iso-structural with guanine, thereby changing RNA base-pairing properties. Here, we provide biophysical, chemical, and biological evidence that A-to-I exchange can activate latent rG4s by filling incomplete G-quartets with inosine. We demonstrate the formation of inosine-containing rG4s (GI-quadruplexes) in vitro and verify their activity in cells. GI-quadruplexes adopt parallel topologies, stabilized by potassium ions. They exhibit moderately reduced thermal stability compared to conventional G-quadruplexes. To study inosine-induced structural changes in a naturally occurring RNA, we use a synthetic approach that enables site-specific inosine incorporation in long RNAs. In summary, RNA GI-quadruplexes are a previously unrecognized structural motif that may contribute to the regulation of gene expression in vivo.


Assuntos
Quadruplex G , Inosina/química , RNA/química , Pareamento de Bases , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Conformação de Ácido Nucleico
16.
Bioinformatics ; 36(12): 3920-3921, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271874

RESUMO

SUMMARY: We define a disease module as a partition of a molecular network whose components are jointly associated with one or several diseases or risk factors thereof. Identification of such modules, across different types of networks, has great potential for elucidating disease mechanisms and establishing new powerful biomarkers. To this end, we launched the 'Disease Module Identification (DMI) DREAM Challenge', a community effort to build and evaluate unsupervised molecular network modularization algorithms. Here, we present MONET, a toolbox providing easy and unified access to the three top-performing methods from the DMI DREAM Challenge for the bioinformatics community. AVAILABILITY AND IMPLEMENTATION: MONET is a command line tool for Linux, based on Docker and Singularity containers; the core algorithms were written in R, Python, Ada and C++. It is freely available for download at https://github.com/BergmannLab/MONET.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software
17.
Microb Pathog ; 152: 104602, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33157219

RESUMO

Vaccine immunization is currently the only effective way to prevent and control the grass carp haemorrhagic disease, and the primary pathogen in these infections is grass carp reovirus genotype II (GCRV-II) for which there is no commercial vaccine. In this study, we evaluated the safety of the GCRV-II avirulent strain GD1108 which isolated in the early stage of the laboratory through continuously passed in grass carp. The immunogenicity and protective effects were evaluated after immunization by injection and immersion. The avirulent strain GD1108 could infect and replicate in the fish which did not revert to virulence after continuous passage. No adverse side effects were observed and the vaccine strain did not spread horizontally among fish. Two routes of immunization induced high serum antibody titers of OD450nm value were 0.79 and 0.76 and neutralization titers of 320 and 320 for the injection and immersion routes of inoculation, respectively. The expression of immune-related genes increased after immunization and the levels were statistically significant. Challenge of immunized fish with a virulent GCRV-II strain resulted in protection rates of 93.88% and 76.00% for the injection and immersion routes, respectively. The avirulent strain GD1108 revealed good safety and immunogenicity via two different inoculation routes. Although the injection route provided the best immune effect, two pathways provided protection against infection with virulent GCRV-II strains in various degrees. These results indicated that the avirulent strain GD1108 can be used for the development and application as live vaccine.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Doenças dos Peixes/prevenção & controle , Genótipo , Reoviridae/genética , Infecções por Reoviridae/prevenção & controle , Infecções por Reoviridae/veterinária
18.
Mol Cell Probes ; 60: 101776, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34740779

RESUMO

Tilapia lake virus (TiLV) is a newly emerged pathogen responsible for high mortality and economic losses in the global tilapia industry. Early and accurate diagnosis is an important priority for TiLV disease control. In order to evaluate the methodology in the molecular diagnosis of TiLV, we compared newly developed quantitative real-time PCR (qPCR) and real-time recombinase polymerase amplification (real-time RPA) assays regarding their sensitivities, specificities and detection effect on clinical samples. Real-time RPA amplified the target pathogen in less than 30 min at 39 °C with a detection limit of 620 copies, while qPCR required about 60 min with a detection limit of 62 copies. Both assays were specific for TiLV and there were no cross-reactions observed with other common fish pathogens. The assays were validated using 35 tissue samples from clinically infected and 60 from artificially infected animals. The sensitivities for the real-time RPA and qPCR assays were 93.33 and 100%, respectively, and the specificity was 100% for both. Both methods have their advantages and can play their roles in different situations. The qPCR is more suitable for quantitative analysis and accurate detection of TiLV in a diagnostic laboratory, whereas real-time RPA is more suitable for the diagnosis of clinical diseases and preliminary screening for TiLV infection in poorly equipped laboratories as well as in fish farms.


Assuntos
Doenças dos Peixes , Tilápia , Vírus , Animais , Doenças dos Peixes/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Recombinases , Sensibilidade e Especificidade
19.
Fish Shellfish Immunol ; 117: 53-61, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284109

RESUMO

Vaccination is the most effective way to control the grass carp haemorrhagic disease (GCHD) with the primary pathogen grass carp reovirus genotype II (GCRV-II). However, due to the large difference in breeding conditions and unclear genetic background of grass carp, the results of the experiment were not reliable, which further hinders the effective prevention and control of GCHD. The rare minnow (Gobiocypris rarus) is highly sensitive to GCRV. Its small size, easy feeding, transparent egg membrane, and annual spawning are in line with the necessary conditions for an experimental aquatic animals culture object. In this study, immunogenicity and protective effects of attenuated and inactivated viruses for grass carp and rare minnow were evaluated in parallel. The expression of immune-related genes increased statistically significant after immunization. With the rise of specific serum antibody titers, the results of rare minnow and grass carp were consistent. In addition, there was no significant residue of adjuvant observed in both fish species injected with an adjuvanted and inactivated virus. Challenge of immunized grass carp and rare minnow with the isolate HuNan1307 resulted in protection rates of 95.8% and 92.6% for attenuated virus, 81.4% and 77.7% for inactivated virus, respectively, as well as the viral load changed consistently. The results indicated that rare minnow can be used as a model for evaluation of experimental vaccines against GCHD.


Assuntos
Cyprinidae , Modelos Animais de Doenças , Doenças dos Peixes/prevenção & controle , Infecções por Reoviridae/prevenção & controle , Reoviridae/imunologia , Vacinas Virais/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Cyprinidae/sangue , Cyprinidae/genética , Cyprinidae/imunologia , Cyprinidae/virologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/virologia , Expressão Gênica/efeitos dos fármacos , Infecções por Reoviridae/mortalidade , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Baço/efeitos dos fármacos , Baço/imunologia
20.
J Fish Dis ; 44(4): 379-390, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33319917

RESUMO

Rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio) are the two most common species in traditional fish farming in Germany. Their aquaculture is threatened upon others by viruses that can cause a high mortality. Therefore, this work focuses on three viruses-viral haemorrhagic septicaemia virus, infectious hematopoietic necrosis virus and cyprinid herpesvirus 3 (CyHV-3)-that endanger these species. To prevent their spread and contain further outbreaks, it is essential to know how long they can outlast in environmental waters and what affects their infectivity outside the host. Hence, the stability of the target viruses in various water matrices was examined and compared in this work. In general, all three viruses were quite stable within sterile water samples (showing mostly ≤1 log reduction after 96 hr) but were inactivated faster and to a higher extent (up to five log steps within 96 hr) in unsterile environmental water samples. The inactivation of the viruses correlated well with the increasing bacterial load of the samples, suggesting that bacteria had the greatest effect on their stability in the examined samples. In comparison, CyHV-3 seemed to be the most sensitive and maintained its infectivity for the shortest period.


Assuntos
Aquicultura , Herpesviridae/isolamento & purificação , Vírus da Necrose Hematopoética Infecciosa/isolamento & purificação , Novirhabdovirus/isolamento & purificação , Águas Residuárias/virologia , Animais , Carpas , Alemanha , Oncorhynchus mykiss , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA