Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 37(4): 643-653, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30448881

RESUMO

Tumor initiation, progression, and metastasis are tissue context-dependent processes. Cellular and non-cellular factors provide the selective microenvironment that determines the fate of the evolving tumor through mechanisms that include metabolic reprogramming. Genetic and epigenetic changes contribute to this reprogramming process, which is orchestrated through ongoing communication between the mitochondrial and nuclear genomes. Metabolic flexibility, in particular the ability to rapidly adjust the balance between glycolytic and mitochondrial energy production, is a hallmark of aggressive, invasive, and metastatic cancers. Tumor cells sustain damage to both nuclear and mitochondrial DNA during tumorigenesis and as a consequence of anticancer treatments. Nuclear and mitochondrial DNA mutations and polymorphisms are increasingly recognized as factors that influence metabolic reprogramming, tumorigenesis, and tumor progression. Severe mitochondrial DNA damage compromises mitochondrial respiration. When mitochondrial respiration drops below a cell-specific threshold, metabolic reprogramming and plasticity fail to compensate and tumor formation is compromised. In these scenarios, tumorigenesis can be restored by acquisition of respiring mitochondria from surrounding stromal cells. Thus, intercellular mitochondrial transfer has the potential to confer treatment resistance and to promote tumor progression and metastasis. Understanding the constraints of metabolic, and in particular bioenergetic reprogramming, and the role of intercellular mitochondrial transfer in tumorigenesis provides new insights into addressing tumor progression and treatment resistance in highly aggressive cancers.


Assuntos
Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Metástase Neoplásica , Neoplasias/genética , Fosforilação Oxidativa
2.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 15-20, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28409855

RESUMO

The view that genes are constrained within somatic cells is challenged by in vitro evidence, and more recently by in vivo studies which demonstrate that mitochondria with their mitochondrial DNA (mtDNA) payload not only can, but do move between cells in tumour models and in mouse models of tissue damage. Using mouse tumour cell models without mtDNA to reflect mtDNA damage, we have shown that these cells grow tumours only after acquiring mtDNA from cells in the local microenvironment resulting in respiration recovery, tumorigenesis and metastasis. Mitochondrial transfer between cells has also been demonstrated following ischaemia-induced injury in the heart and brain and in lung epithelium, and following lung inflammation. In vitro investigations suggest that stem cells may be mitochondrial donors. The ability of mitochondria to move between cells appears to be an evolutionarily-conserved phenomenon, relevant to diseases with compromised mitochondrial function including neurodegenerative, neuromuscular and cardiovascular diseases as well as cancer and ageing.


Assuntos
Movimento Celular , Mitocôndrias/metabolismo , Animais , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Biogênese de Organelas , Microambiente Tumoral
3.
BMC Cancer ; 16(1): 726, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27613604

RESUMO

BACKGROUND: The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. METHODS: We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. RESULTS: We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. CONCLUSION: We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.


Assuntos
Antígeno AC133/genética , Separação Celular/métodos , Melanoma/patologia , Células-Tronco Neoplásicas/imunologia , Antígeno AC133/metabolismo , Animais , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Humanos , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Fenótipo , Microambiente Tumoral
4.
Bioorg Med Chem ; 24(17): 3932-3939, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27108400

RESUMO

A series of N,N-bis(glycityl)amines with promising anti-cancer activity were prepared via the reductive amination of pentoses and hexoses, and subsequently screened for their ability to selectively inhibit the growth of cancerous versus non-cancerous cells. For the first time, we show that this class of compounds possesses anti-proliferative activity, and, while the selective killing of brain cancer (LN18) cells versus matched (SVG-P12) cells was modest, several of the amines, including d-arabinitylamine 1a and d-fucitylamine 1g, exhibited low micromolar IC50 values for HL60 cells. Moreover, these two amines showed good selectivity towards HL60 cells when compared to non-cancerous HEK-293 cells. The compounds also showed low micromolar inhibition of the leukaemic cell line, THP-1. The modes of action of amines 1a and 1g were then determined using yeast chemical genetics, whereby it was established that both compounds affect similar but distinct sets of biochemical pathways. Notably purine nucleoside monophosphate biosynthesis was identified as an enriched mechanism. The rapid synthesis of the amines and their unique mode of action thus make them attractive targets for further development as anti-cancer drugs.


Assuntos
Amino Açúcares/farmacologia , Antineoplásicos/farmacologia , Álcoois Açúcares/farmacologia , Amino Açúcares/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Doxorrubicina/farmacologia , Células HEK293 , Humanos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Álcoois Açúcares/síntese química , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
5.
Biochim Biophys Acta ; 1840(4): 1454-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24141138

RESUMO

BACKGROUND: Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood. SCOPE OF REVIEW: This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis. MAJOR CONCLUSIONS: It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status. GENERAL SIGNIFICANCE: Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.


Assuntos
Carcinogênese/genética , Transporte de Elétrons/genética , Mitocôndrias/genética , Metástase Neoplásica/genética , Animais , Humanos , Mutação , Microambiente Tumoral
6.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36795453

RESUMO

Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.


Assuntos
Mitocôndrias , Neoplasias , Animais , Filogenia , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Metabolismo Energético , Mamíferos
7.
Mar Drugs ; 10(4): 900-917, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22690150

RESUMO

Mycothiazole, a polyketide metabolite isolated from the marine sponge Cacospongia mycofijiensis, is a potent inhibitor of metabolic activity and mitochondrial electron transport chain complex I in sensitive cells, but other cells are relatively insensitive to the drug. Sensitive cell lines (IC(50) 0.36-13.8 nM) include HeLa, P815, RAW 264.7, MDCK, HeLa S3, 143B, 4T1, B16, and CD4/CD8 T cells. Insensitive cell lines (IC(50) 12.2-26.5 µM) include HL-60, LN18, and Jurkat. Thus, there is a 34,000-fold difference in sensitivity between HeLa and HL-60 cells. Some sensitive cell lines show a biphasic response, suggesting more than one mechanism of action. Mitochondrial genome-knockout ρ(0) cell lines are insensitive to mycothiazole, supporting a conditional mitochondrial site of action. Mycothiazole is cytostatic rather than cytotoxic in sensitive cells, has a long lag period of about 12 h, and unlike the complex I inhibitor, rotenone, does not cause G(2)/M cell cycle arrest. Mycothiazole decreases, rather than increases the levels of reactive oxygen species after 24 h. It is concluded that the cytostatic inhibitory effects of mycothiazole on mitochondrial electron transport function in sensitive cell lines may depend on a pre-activation step that is absent in insensitive cell lines with intact mitochondria, and that a second lower-affinity cytotoxic target may also be involved in the metabolic and growth inhibition of cells.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Genoma Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tiazóis/farmacologia , Animais , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Células HL-60 , Células HeLa , Humanos , Células Jurkat , Camundongos , Mitocôndrias/genética , Poríferos/química , Poríferos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Front Oncol ; 12: 857686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372069

RESUMO

The ability of cancer cells to adjust their metabolism in response to environmental changes is a well-recognized hallmark of cancer. Diverse cancer and non-cancer cells within tumors compete for metabolic resources. Metabolic demands change frequently during tumor initiation, progression and metastasis, challenging our quest to better understand tumor biology and develop novel therapeutics. Vascularization, physical constraints, immune responses and genetic instability promote tumor evolution resulting in immune evasion, opportunities to breach basement membrane barriers and spread through the circulation and lymphatics. In addition, the unfolded protein response linked to the ubiquitin proteasome system is a key player in addressing stoichiometric imbalances between nuclear and mitochondrially-encoded protein subunits of respiratory complexes, and nuclear-encoded mitochondrial ribosomal protein subunits. While progressive genetic changes, some of which affect metabolic adaptability, contribute to tumorigenesis and metastasis through clonal expansion, epigenetic changes are also important and more dynamic in nature. Understanding the role of stromal and immune cells in the tumor microenvironment in remodeling cancer cell energy metabolism has become an increasingly important area of research. In this perspective, we discuss the adaptations made by cancer cells to balance mitochondrial and glycolytic energy metabolism. We discuss how hypoxia and nutrient limitations affect reductive and oxidative stress through changes in mitochondrial electron transport activity. We propose that integrated responses to cellular stress in cancer cells are central to metabolic flexibility in general and bioenergetic adaptability in particular and are paramount in tumor progression and metastasis.

9.
J Cell Biochem ; 112(7): 1869-79, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21433059

RESUMO

The switch from oxidative phosphorylation to glycolytic metabolism results in cells that generate fewer reactive oxygen species (ROS) and are resistant to the intrinsic induction of apoptosis. As a consequence, glycolytic cancer cells are resistant to radiation and chemotherapeutic agents that rely on production of ROS or intrinsic apoptosis. Further, the level of glycolysis correlates with tumor invasion, making glycolytic cancer cells an important target for new therapy development. We have synthesized a novel redox-active quinone phloroglucinol derivative, PMT7. Toxicity of PMT7 was in part due to loss of mitochondrial membrane potential in treated cells with subsequent loss of mitochondrial metabolic activity. Mitochondrial gene knockout ρ0 cells, a model of highly glycolytic cancers, were only half as sensitive as the corresponding wild-type cells and metabolic pathways downstream of MET were unaffected in ρ0 cells. However, PMT7 toxicity was also due to a block in autophagy. Both wild-type and ρ0 cells were susceptible to autophagy blockade, and the resistance of ρ0 cells to PMT7 could be overcome by serum deprivation, a situation where autophagy becomes necessary for survival. The stress response class III deacetylase SIRT1 was not significantly involved in PMT7 toxicity, suggesting that unlike other chemotherapeutic drugs, SIRT1-mediated stress and survival responses were not induced by PMT7. The dependence on autophagy or other scavenging pathways makes glycolytic cancer cells vulnerable. This can be exploited by induction of energetic stress to specifically sensitize glycolytic cells to other stresses such as nutrient deprivation or potentially chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Benzoquinonas/farmacologia , Estresse Fisiológico , Benzoquinonas/síntese química , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Transporte de Elétrons , Técnicas de Inativação de Genes , Glicólise , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Oxirredução , Interferência de RNA , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxidos/metabolismo , Sais de Tetrazólio/química , Sais de Tetrazólio/metabolismo , Tiazóis/química , Tiazóis/metabolismo
10.
Oncogene ; 40(14): 2539-2552, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686239

RESUMO

Pancreatic cancer is one of the deadliest forms of cancer, which is attributed to lack of effective treatment options and drug resistance. Mitochondrial inhibitors have emerged as a promising class of anticancer drugs, and several inhibitors of the electron transport chain (ETC) are being clinically evaluated. We hypothesized that resistance to ETC inhibitors from the biguanide class could be induced by inactivation of SMAD4, an important tumor suppressor involved in transforming growth factor ß (TGFß) signaling, and associated with altered mitochondrial activity. Here we show that, paradoxically, both TGFß-treatment and the loss of SMAD4, a downstream member of TGFß signaling cascade, induce resistance to biguanides, decrease mitochondrial respiration, and fragment the mitochondrial network. Mechanistically, the resistance of SMAD4-deficient cells is mediated by increased mitophagic flux driven by MAPK/ERK signaling, whereas TGFß-induced resistance is autophagy-independent and linked to epithelial-to-mesenchymal transition (EMT). Interestingly, mitochondria-targeted tamoxifen, a complex I inhibitor under clinical trial, overcomes resistance mediated by SMAD4-deficiency or TGFß signaling. Our data point to differential mechanisms underlying the resistance to treatment in PDAC arising from TGFß signaling and SMAD4 loss, respectively. The findings will help the development of mitochondria-targeted therapy for pancreatic cancer patients with SMAD4 as a plausible predictive marker.


Assuntos
Neoplasias Pancreáticas/metabolismo , Proteína Smad4/metabolismo , Humanos , Mitofagia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais
11.
Bioorg Med Chem ; 18(9): 3238-51, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20363637

RESUMO

A variety of 6,7-substituted-5,8-quinolinequinones were synthesised and assessed for their anti-tumour and anti-inflammatory activities, and their ability to inhibit the growth of Mycobacterium bovis BCG. In particular, the introduction of a sulfur group at the 7-position of the quinolinequinone led to the discovery of two compounds, 6-methylamino-7-methylsulfanyl-5,8-quinolinequinone (10a) and 6-amino-7-methylsulfonyl-5,8-quinolinequinone (12), that exhibited selectivity for leukemic cells over T-cells, a highly desirable property for an anti-cancer drug. A number of anti-inflammatory (AI) compounds were also identified, with 6,7-bis-methylsulfanyl-5,8-quinolinequinone (18a) exhibiting the highest AI activity (0.11 microM), while 6,7-dichloro-5,8-quinolinequinone (7a), 6,7-dichloro-2-methyl-5,8-quinolinequinone (7b), and 6,7-bis-phenylsulfanyl-quinoline-5,8-diol (19) also exhibited good AI activity and specificity. Several quinolinequinone TB-drug candidates were identified. Of these, 6-amino-7-chloro-5,8-quinolinequinone (11) and 6-amino-7-methanesulfinyl-5,8-quinolinequinone (14), exhibited low MICs (1.56-3.13 microg/mL) for the 100% growth inhibition of M. Bovis BCG. Some general trends pertaining to the functional group substitution of the quinolinequinone core and biological activity were also identified.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Mycobacterium bovis/efeitos dos fármacos , Quinonas/farmacologia , Aminas/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antituberculosos/síntese química , Antituberculosos/química , Proliferação de Células/efeitos dos fármacos , Cloro/química , Células HL-60 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacologia , Quinonas/síntese química , Quinonas/química , Estereoisomerismo , Enxofre/química
12.
Front Physiol ; 11: 543962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329014

RESUMO

Tumor cells without mitochondrial (mt) DNA (ρ0 cells) are auxotrophic for uridine, and their growth is supported by pyruvate. While ATP synthesis in ρ0 cells relies on glycolysis, they fail to form tumors unless they acquire mitochondria from stromal cells. Mitochondrial acquisition restores respiration that is essential for de novo pyrimidine biosynthesis and for mitochondrial ATP production. The physiological processes that underpin intercellular mitochondrial transfer to tumor cells lacking mtDNA and the metabolic remodeling and restored tumorigenic properties of cells that acquire mitochondria are not well understood. Here, we investigated the changes in mitochondrial and nuclear gene expression that accompany mtDNA deletion and acquisition in metastatic murine 4T1 breast cancer cells. Loss of mitochondrial gene expression in 4T1ρ0 cells was restored in cells recovered from subcutaneous tumors that grew from 4T1ρ0 cells following acquisition of mtDNA from host cells. In contrast, the expression of most nuclear genes that encode respiratory complex subunits and mitochondrial ribosomal subunits was not greatly affected by loss of mtDNA, indicating ineffective mitochondria-to-nucleus communication systems for these nuclear genes. Further, analysis of nuclear genes whose expression was compromised in 4T1ρ0 cells showed that immune- and stress-related genes were the most highly differentially expressed, representing over 70% of those with greater than 16-fold higher expression in 4T1 compared with 4T1ρ0 cells. The monocyte recruiting chemokine, Ccl2, and Psmb8, a subunit of the immunoproteasome that generates MHCI-binding peptides, were the most highly differentially expressed. Early monocyte/macrophage recruitment into the tumor mass was compromised in 4T1ρ0 cells but recovered before mtDNA could be detected. Taken together, our results show that mitochondrial acquisition by tumor cells without mtDNA results in bioenergetic remodeling and re-expression of genes involved in immune function and stress adaptation.

13.
Biochem Biophys Rep ; 24: 100858, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294636

RESUMO

PURPOSE: Cancer cells rapidly adjust their balance between glycolytic and mitochondrial ATP production in response to changes in their microenvironment and to treatments like radiation and chemotherapy. Reliable, simple, high throughput assays that measure the levels of mitochondrial energy metabolism in cells are useful determinants of treatment effects. Mitochondrial metabolism is routinely determined by measuring the rate of oxygen consumption (OCR). We have previously shown that indirect inhibition of plasma membrane electron transport (PMET) by the mitochondrial uncoupler, FCCP, may also be a reliable measure of mitochondrial energy metabolism. Here, we aimed to validate these earlier findings by exploring the relationship between stimulation of oxygen consumption by FCCP and inhibition of PMET. METHODS: We measured PMET by reduction of the cell impermeable tetrazolium salt WST-1/PMS. We characterised the effect of different growth conditions on the extent of PMET inhibition by FCCP. Next, we compared FCCP-mediated PMET inhibition with FCCP-mediated stimulation of OCR using the Seahorse XF96e flux analyser, in a panel of cancer cell lines. RESULTS: We found a strong inverse correlation between stimulation of OCR and PMET inhibition by FCCP. PMET and OCR were much more severely affected by FCCP in cells that rely on mitochondrial energy production than in cells with a more glycolytic phenotype. CONCLUSION: Indirect inhibition of PMET by FCCP is a reliable, simple and inexpensive high throughput assay to determine the level of mitochondrial energy metabolism in cancer cells.

14.
Immunotherapy ; 12(6): 395-406, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32316797

RESUMO

Aim: The efficacy of anti-lymphoma vaccines that exploit the cellular adjuvant properties of activated natural killer T (NKT) cells were examined in mouse models of CNS lymphoma. Materials & methods: Vaccines were prepared by either loading the NKT cell agonist, α-galactosylceramide onto irradiated and heat-shocked B- and T-lymphoma cells, or chemically conjugating α-galactosylceramide to MHC-binding peptides from a lymphoma-associated antigen. Vaccine efficacy was analyzed in mice bearing intracranial tumors. Results: Both forms of vaccine proved to be effective in preventing lymphoma engraftment through activity of T cells that accessed the CNS. Established lymphoma was harder to treat with responses constrained by Tregs, but this could be overcome by depleting Tregs prior to vaccination. Conclusion: Simply designed NKT cell-activating vaccines enhance T-cell responses and have the potential to protect against CNS lymphoma development or prevent CNS relapse. To be effective against established CNS lymphoma, vaccines need to be combined with Treg suppression.


Assuntos
Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Galactosilceramidas/imunologia , Linfoma/imunologia , Células T Matadoras Naturais/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Galactosilceramidas/química , Humanos , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/imunologia
15.
J Appl Physiol (1985) ; 128(5): 1346-1354, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271093

RESUMO

Humanin is a small regulatory peptide encoded within the 16S ribosomal RNA gene (MT-RNR2) of the mitochondrial genome that has cellular cyto- and metabolo-protective properties similar to that of aerobic exercise training. Here we investigated whether acute high-intensity interval exercise or short-term high-intensity interval training (HIIT) impacted skeletal muscle and plasma humanin levels. Vastus lateralis muscle biopsies and plasma samples were collected from young healthy untrained men (n = 10, 24.5 ± 3.7 yr) before, immediately following, and 4 h following the completion of 10 × 60 s cycle ergometer bouts at V̇o2peak power output (untrained). Resting and postexercise sampling was also performed after six HIIT sessions (trained) completed over 2 wk. Humanin protein abundance in muscle and plasma were increased following an acute high-intensity exercise bout. HIIT trended (P = 0.063) to lower absolute humanin plasma levels, without effecting the response in muscle or plasma to acute exercise. A similar response in the plasma was observed for the small humanin-like peptide 6 (SHLP6), but not SHLP2, indicating selective regulation of peptides encoded by MT-RNR2 gene. There was a weak positive correlation between muscle and plasma humanin levels, and contraction of isolated mouse EDL muscle increased humanin levels ~4-fold. The increase in muscle humanin levels with acute exercise was not associated with MT-RNR2 mRNA or humanin mRNA levels (which decreased following acute exercise). Overall, these results suggest that humanin is an exercise-sensitive mitochondrial peptide and acute exercise-induced humanin responses in muscle are nontranscriptionally regulated and may partially contribute to the observed increase in plasma concentrations.NEW & NOTEWORTHY Small regulatory peptides encoded within the mitochondrial genome (mitochondrial derived peptides) have been shown to have cellular cyto- and metabolo-protective roles that parallel those of exercise. Here we provide evidence that humanin and SHLP6 are exercise-sensitive mitochondrial derived peptides. Studies to determine whether mitochondrial derived peptides play a role in regulating exercise-induced adaptations are warranted.


Assuntos
Treinamento Intervalado de Alta Intensidade , Peptídeos e Proteínas de Sinalização Intracelular , Músculo Esquelético , Adulto , Animais , Genes de RNAr , Humanos , Masculino , Camundongos , Peptídeos , Adulto Jovem
16.
Haematologica ; 94(7): 928-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535345

RESUMO

BACKGROUND: The redox-active isoflavene anti-cancer drug, phenoxodiol, has previously been shown to inhibit plasma membrane electron transport and cell proliferation and promote apoptosis in a range of cancer cell lines and in anti-CD3/anti-CD28-activated murine splenocytes but not in non-transformed WI-38 cells and human umbilical vein endothelial cells. DESIGN AND METHODS: We determined the effects of phenoxodiol on plasma membrane electron transport, MTT responses and viability of activated and resting human T cells. In addition, we evaluated the effect of phenoxodiol on the viability of leukemic cell lines and primary myeloid and lymphoid leukemic blasts. RESULTS: We demonstrated that phenoxodiol inhibited plasma membrane electron transport and cell proliferation (IC(50) 46 microM and 5.4 microM, respectively) and promoted apoptosis of rapidly proliferating human T cells but did not affect resting T cells. Phenoxodiol also induced apoptosis in T cells stimulated in HLA-mismatched allogeneic mixed lymphocyte reactions. Conversely, non-proliferating T cells in the mixed lymphocyte reaction remained viable and could be restimulated in a third party mixed lymphocyte reaction, in the absence of phenoxodiol. In addition, we demonstrated that leukemic blasts from patients with primary acute myeloid leukemia (n=22) and acute lymphocytic leukemia (n=8) were sensitive to phenoxodiol. The lymphocytic leukemic blasts were more sensitive than the myeloid leukemic blasts to 10 muM phenoxodiol exposure for 24h (viability of 23+/-4% and 64+/-5%, respectively, p=0.0002). CONCLUSIONS: The ability of phenoxodiol to kill rapidly proliferating lymphocytes makes this drug a promising candidate for the treatment of pathologically-activated lymphocytes such as those in acute lymphoid leukemia, or diseases driven by T-cell proliferation such as auto-immune diseases and graft-versus-host disease.


Assuntos
Isoflavonas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Oxirredução , Baço/citologia , Linfócitos T/imunologia , Linfócitos T/patologia , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Veias Umbilicais/patologia
17.
J Org Chem ; 74(23): 9195-8, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19863121

RESUMO

Rossinones A (1) and B (2), biologically active meroterpene derivatives, were isolated from an Antarctic collection of the ascidian Aplidium species and structurally characterized with spectroscopic methods. The absolute configuration of 1 was deduced by using the modified Mosher method. The rossinones exhibit anti-inflammatory, antiviral and antiproliferative activities.


Assuntos
Terpenos , Urocordados/química , Animais , Regiões Antárticas , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antivirais/química , Antivirais/isolamento & purificação , Estrutura Molecular , Terpenos/química , Terpenos/isolamento & purificação , Terpenos/farmacologia
18.
Redox Biol ; 26: 101220, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31176262

RESUMO

Glioblastoma (GBM) has a poor prognosis despite intensive treatment with surgery and chemoradiotherapy. Previous studies using dose-escalated radiotherapy have demonstrated improved survival; however, increased rates of radionecrosis have limited its use. Development of radiosensitizers could improve patient outcome. In the present study, we report the use of sodium sulfide (Na2S), a hydrogen sulfide (H2S) donor, to selectively kill GBM cells (T98G and U87) while sparing normal human cerebral microvascular endothelial cells (hCMEC/D3). Na2S also decreased mitochondrial respiration, increased oxidative stress and induced γH2AX foci and oxidative base damage in GBM cells. Since Na2S did not significantly alter T98G capacity to perform non-homologous end-joining or base excision repair, it is possible that GBM cell killing could be attributed to increased damage induction due to enhanced reactive oxygen species production. Interestingly, Na2S enhanced mitochondrial respiration, produced a more reducing environment and did not induce high levels of DNA damage in hCMEC/D3. Taken together, this data suggests involvement of mitochondrial respiration in Na2S toxicity in GBM cells. The fact that survival of LN-18 GBM cells lacking mitochondrial DNA (ρ0) was not altered by Na2S whereas the survival of LN-18 ρ+ cells was compromised supports this conclusion. When cells were treated with Na2S and photon or proton radiation, GBM cell killing was enhanced, which opens the possibility of H2S being a radiosensitizer. Therefore, this study provides the first evidence that H2S donors could be used in GBM therapy to potentiate radiation-induced killing.


Assuntos
Reparo do DNA/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Sulfetos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA/efeitos da radiação , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Humanos , Sulfeto de Hidrogênio/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Neuroglia/patologia , Neuroglia/efeitos da radiação , Especificidade de Órgãos , Fosforilação Oxidativa/efeitos dos fármacos , Fosforilação Oxidativa/efeitos da radiação , Estresse Oxidativo , Fótons , Terapia com Prótons , Radiossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/química
19.
Cell Metab ; 29(2): 399-416.e10, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30449682

RESUMO

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Pirimidinas/metabolismo , Animais , Linhagem Celular Tumoral , Respiração Celular , Di-Hidro-Orotato Desidrogenase , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Ubiquinona/metabolismo
20.
Biochim Biophys Acta ; 1767(2): 170-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17266920

RESUMO

Oxygen consumption for bioenergetic purposes has long been thought to be the prerogative of mitochondria. Nevertheless, mitochondrial gene knockout (rho(0)) cells that are defective in mitochondrial respiration require oxygen for growth and consume oxygen at the cell surface via trans-plasma membrane electron transport (tPMET). This raises the possibility that cell surface oxygen consumption may support glycolytic energy metabolism by reoxidising cytosolic NADH to facilitate continued glycolysis. In this paper we determined the extent of cell surface oxygen consumption in a panel of 19 cancer cell lines. Non-mitochondrial (myxothiazol-resistant) oxygen consumption was demonstrated to consist of at least two components, cell surface oxygen consumption (inhibited by extracellular NADH) and basal oxygen consumption (insensitive to both myxothiazol and NADH). The extent of cell surface oxygen consumption varied considerably between parental cell lines from 1% to 80% of total oxygen consumption rates. In addition, cell surface oxygen consumption was found to be associated with low levels of superoxide production and to contribute significantly (up to 25%) to extracellular acidification in HL60rho(0) cells. In summary, cell surface oxygen consumption contributes significantly to total cellular oxygen consumption, not only in rho(0) cells but also in mitochondrially competent tumour cell lines with glycolytic metabolism.


Assuntos
Membrana Celular/metabolismo , Glicólise/fisiologia , Consumo de Oxigênio/fisiologia , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular Tumoral , Meios de Cultura , Células HL-60 , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Metacrilatos/farmacologia , Metilfenazônio Metossulfato/análogos & derivados , Metilfenazônio Metossulfato/metabolismo , Camundongos , NAD/farmacologia , Superóxidos/metabolismo , Sais de Tetrazólio/metabolismo , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA