RESUMO
Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we employed temperature-dependent variable-angle spectroscopic ellipsometry, density functional theory calculations, and broadband transient absorption spectroscopy spanning the visible to mid-to-deep-ultraviolet (UV) ranges on MAPbBr3 thin films. The use of deep-UV detection opens a new spectral window that enables the exploration of high-energy excitations at various symmetry points within the Brillouin zone, facilitating an understanding of the ultrafast responses of the UV bands and the underlying mechanisms governing them. Our investigation reveals that the photoinduced spectral features remarkably resemble those generated by pure lattice heating, and we disentangle the relative thermal and electronic contributions and their evolutions at different delay times using combinations of decay-associated spectra and temperature-induced differential absorption. The results demonstrate that the photoinduced transients possess a significant thermal origin and cannot be attributed solely to electronic effects. Following photoexcitation, as carriers (electrons and holes) transfer their energy to the lattice, the thermal contribution increases from â¼15% at 1 ps to â¼55% at 500 ps and subsequently decreases to â¼35-50% at 1 ns. These findings elucidate the intricate energy exchange between charge carriers and the lattice in photoexcited perovskite materials and provide insights into the limited utilization efficiency of photogenerated charge carriers.
RESUMO
Double perovskites (DP) have attracted extensive attention due to their rich structures and wide application prospects in the field of optoelectronics. Here, we report 15 new Bi-based double perovskite derived halides with the general formula of A2 BBiX6 (A=organic cationic ligand, B=K or Rb, X=Br or I). These materials are synthesized using organic ligands to coordinate with metal ions with a sp3 oxygen, and diverse structure types have been obtained with distinct dimensionalities and connectivity modes. The optical band gaps of these phases can be tuned by changing the halide, the organic ligand and the alkali metal, varying from 2.0 to 2.9â eV. The bromide phases exhibit increasing photoluminescence (PL) intensity with decreasing temperature, while the PL intensity of iodide phases changes nonmonotonically with temperature. Because the majority of these phases are non-centrosymmetric, second harmonic generation (SHG) responses are also measured for selected non-centrosymmetric materials, showing different particle-size-dependent trends. Our findings give rise to a series of new structural types to the DP family, and provide a powerful synthetic handle for symmetry breaking.
RESUMO
Two-dimensional layered organic-inorganic halide perovskites have successfully spread to diverse optoelectronic applications. Nevertheless, there remain gaps in our understanding of the interactions between organic and inorganic sublattices that form the foundation of their remarkable properties. Here, we examine these interactions using pump-probe spectroscopy and ab initio molecular dynamics simulations. Unlike off-resonant pumping, resonant excitation of the organic sublattice alters both the electronic and lattice degrees of freedom within the inorganic sublattice, indicating the existence of electronic coupling. Theoretical simulations verify that the reduced bandgap is likely due to the enhanced distortion index of the inorganic octahedra. Further evidence of the mechanical coupling between these two sublattices is revealed through the slow heat transfer process, where the resultant lattice tensile strain launches coherent longitudinal acoustic phonons. Our findings explicate the intimate electronic and mechanical couplings between the organic and inorganic sublattices, crucial for tailoring the optoelectronic properties of two-dimensional halide perovskites.
RESUMO
Single crystal perovskites have garnered significant attention as potential replacements for existing absorber layer materials. Despite the extensive investigations on their photoinduced charge-carriers dynamics, most of the time-resolved techniques focus on bulk properties, neglecting surface characteristic which plays a crucial role for their optoelectronic performance. Herein, 4D ultrafast scanning electron microscopy (4D-USEM) is utilized to probing the photogenerated carrier transport at the first few nanometers, alongside density functional theory (DFT) to track both defect centers and ions migration. Two compositions of mixed cation are investigated: FA0.6MA0.4PbI3 and FA0.4MA0.6PbI3, interestingly, the former displays a longer lifetime compared to the latter due the presence of a higher surface-defect centers. DFT calculations fully support that revealing samples with higher FA content have a lower energy barrier for iodide ions to migrate from the bulk to top layer, assisting in passivating surface vacancies, and a higher energy diffusion barrier to escape from surface to vacuum, resulting in fewer vacancies and longer-lived hole-electron pairs. These findings manifest the influence of cation selection on charge carrier transport and formation of defects, and emphasize the importance of understanding ion migrations role in controlling surface vacancies to assist engineering high-performance optoelectronic devices based on single crystal perovskites.
RESUMO
Two-dimensional hybrid organic-inorganic perovskites with chiral spin texture are emergent spin-optoelectronic materials. Despite the wealth of chiro-optical studies on these materials, their charge-to-spin conversion efficiency is unknown. We demonstrate highly efficient electrically driven charge-to-spin conversion in enantiopure chiral perovskites (R/S-MB)2(MA)3Pb4I13 (ãnã = 4), where MB is 2-methylbutylamine, MA is methylamine, Pb is lead, and I is iodine. Using scanning photovoltage microscopy, we measured a spin Hall angle θsh of 5% and a spin lifetime of ~75 picoseconds at room temperature in ãnã = 4 chiral perovskites, which is much larger than its racemic counterpart as well as the lower ãnã homologs. In addition to current-induced transverse spin current, the presence of a coexisting out-of-plane spin current confirms that both conventional and collinear spin Hall conductivities exist in these low-dimensional crystals.
RESUMO
Exciton transport in two-dimensional Ruddlesden-Popper perovskite plays a pivotal role for their optoelectronic performance. However, a clear photophysical picture of exciton transport is still lacking due to strong confinement effects and intricate exciton-phonon interactions in an organic-inorganic hybrid lattice. Herein, we present a systematical study on exciton transport in (BA)2(MA)n-1PbnI3n+1 Ruddlesden-Popper perovskites using time-resolved photoluminescence microscopy. We reveal that the free exciton mobilities in exfoliated thin flakes can be improved from around 8 cm2 V-1 s-1 to 280 cm2V-1s-1 by anchoring the soft butyl ammonium cation with a polymethyl methacrylate network at the surface. The mobility of the latter is close to the theoretical limit of Mott-Ioffe-Regel criterion. Combining optical measurements and theoretical studies, it is unveiled that the polymethyl methacrylate network significantly improve the lattice rigidity resulting in the decrease of deformation potential scattering and lattice fluctuation at the surface few layers. Our work elucidates the origin of high exciton mobility in Ruddlesden-Popper perovskites and opens up avenues to regulate exciton transport in two-dimensional materials.