Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(2): 287-293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37501357

RESUMO

Contamination of aquatic ecosystems with organic and inorganic contaminants is a global threat due to their hazardous effects on the environment and human health. Floating treatment wetland (FTW) technology is a cost-effective and sustainable alternative to existing treatment approaches. It consists of a buoyant mat in which wetland plants can grow and develop their roots in a suspended manner and can be implemented to treat stormwater, municipal wastewater, and industrial effluents. Here we explored the potential of bacterial-augmented FTWs for the concurrent remediation of phenol and hexavalent chromium (Cr6+) contaminated water and evaluated treated water toxicity using Triticum aestivum L. (wheat) as a test plant. The FTWs carrying Phragmites australis L. (common reed) were inoculated with a consortium of four bacterial strains (Burkholderia phytofirmans PsJN, Acinetobacter lwofii ACRH76, Pseudomonas aeruginosa PJRS20, Bacillus sp. PJRS25) and evaluated for their potential to simultaneously remove phenol and chromium (Cr) from contaminated water. Results revealed that the FTWs efficiently improved water quality by removing phenol (86%) and Cr (80%), with combined use of P. australis and bacterial consortium after 50 days. The phytotoxicity assay demonstrated that the germination of wheat seed (96%) was significantly higher where bacterial-augmented FTWs treated water was used compared to untreated water. This pilot-scale study highlights that the combined application of wetland plants and bacterial consortium in FTWs is a promising approach for concomitant abatement of phenol and Cr from contaminated water, especially for developing countries like Pakistan where the application of advanced and expensive technologies is limited.


This pilot-scale research provides new interventions and information required for establishing a large-scale remediation framework for the effective, sustainable and eco-friendly remediation of phenol and Cr co-contaminated aquatic ecosystems, using bacterial augmented floating wetlands technology (FTWs).


Assuntos
Fenol , Poluentes Químicos da Água , Humanos , Áreas Alagadas , Ecossistema , Biodegradação Ambiental , Bactérias , Cromo , Fenóis , Triticum , Poluentes Químicos da Água/análise
2.
Int J Phytoremediation ; 26(3): 294-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493366

RESUMO

Under paddy soil conditions, rice plants are vulnerable to arsenic (As) accumulation, thus causing potential threat to human health. Here we investigated the influence of foliar-applied phosphorus (P: 10 and 20 mg L-1), silicon (Si: 0.6 and 1.5 g L-1) and selenium (Se: 5 and 10 mg L-1) on As accumulation, morphological and physiological attributes of two contrasting rice genotypes (KSK-133 and Super Basmati) under As stress (25 mg kg-1 as arsenate). Silicon foliar dressing significantly (p < 0.05) reduced grain As uptake (up to 67%) and improved rice growth and chlorophyll content (28-66%) in both rice genotypes over their controls. Phosphorus foliar application resulted in a notable decrease (17%) in grain As uptake of coarse rice genotype (KSK-133), while it slightly increased grain As uptake in the fine one (Super Basmati; 6%) compared to controls. However, foliar-applied Se did not show significant effects on rice plants growth attributes and As uptake in both genotypes. Similarly, biochemical and enzymatic attributes (i.e., lipid peroxidation, electrolyte leakage, peroxidase and catalase) were improved with Si application in rice plants, except for P treatment that was only effective for coarse one. Foliar-applied Si also resulted in reduced cancer risk and hazard quotient (< 0.10) for both rice genotypes. This study advances our understanding on critical role of different foliar-applied nutrients and rice genotypes, which is imperative to develop effective As remediation and management strategies in coarse and fine rice genotypes and protect human health.


This study provided new insights on the significance of foliar-applied phosphorus, silicon and selenium for the management and remediation of arsenic in fine (Super Basmati) and coarse (KSK-133) rice genotypes. Foliar-applied silicon was the most promising strategy to mitigate arsenic uptake and minimizing health risk in rice grain of both genotypes, while phosphorus was effective only for coarse one, thus showing a genotype dependent response. Interestingly, selenium foliar application had no significant effect on arsenic accumulation in both rice genotypes.


Assuntos
Arsênio , Oryza , Selênio , Poluentes do Solo , Humanos , Silício/análise , Silício/farmacologia , Fósforo , Oryza/genética , Poluentes do Solo/análise , Biodegradação Ambiental , Solo/química , Genótipo , Grão Comestível/química
3.
Int J Phytoremediation ; 26(8): 1243-1252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265045

RESUMO

There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.


Till date, abundant research has focused on plant biophysicochemical responses to different types of pollutants. However, the majority of these studies dealt with pollutant exposure to mature plants (generally after a vegetative growth period of 1­2 weeks). Despite significant research, there are still limited data regarding the biophysicochemical responses of plants at their early stages of germination and growth. In fact, stresses at germination or at an early stage of growth can be highly fatal and may significantly affect the ultimate plant growth and potential to remediate the contaminated sites. Therefore, the current study deals with the exposure of germinating pea seedlings to arsenic (As) stress under varied amendments. This experimental plan helped to understand the initial biophysicochemical changes induced in pea plants under As stress.


Assuntos
Arsênio , Germinação , Pisum sativum , Plântula , Poluentes do Solo , Pisum sativum/efeitos dos fármacos , Pisum sativum/fisiologia , Plântula/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Arsênio/metabolismo , Poluentes do Solo/metabolismo , Cálcio/metabolismo , Ácido Edético/farmacologia , Biodegradação Ambiental , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas , Estresse Fisiológico
4.
Int J Phytoremediation ; 26(3): 349-368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37559458

RESUMO

Wastewater contamination with heavy metal(loids)s has become a worldwide environmental and public health problem due to their toxic and non-degradable nature. Different methods and technologies have been applied for water/wastewater treatment to mitigate heavy metal(loid)-induced toxicity threat to humans. Among various treatment methods, adsorption is considered the most attractive method because of its high ability and efficiency to remove contaminants from wastewater. Agricultural waste-based adsorbents have gained great attention because of high efficiency to heavy metal(loids)s removal from contaminated water. Chemically modified biosorbents can significantly enhance the stability and adsorption ability of the sorbents. The two mathematical models of sorption, Freundlich and Langmuir isotherm models, have mostly been studied. In kinetic modeling, pseudo-second-order model proved better in most of the studies compared to pseudo-first-order model. The ion exchange and electrostatic attraction are the main mechanisms for adsorption of heavy metal(loid)s on biosorbents. The regeneration has allowed various biosorbents to be recycled and reused up to 4-5 time. Most effective eluents used for regeneration are dilute acids. For practical perspective, biosorbent removal efficiency has been elucidated using various types of wastewater and economic analysis studies. Economic analysis of adsorption process using agricultural waste-based biosorbents proved this approach cheaper compared to traditional commercial adsorbents, such as chemically activated carbon. The review also highlights key research gaps to advance the scope and application of waste peels for the remediation of heavy metal(loid)s-contaminated wastewater.


This review provides new information and insights on the potential utilization of agriculture-based biosorbents for the removal of contaminants, especially heavy metal(loid)s from toxic water/wastewater, as well as their mechanisms, adsorption efficiency, and regeneration ability. For practical perspective, biosorbent adsorption efficiency was elucidated by using various types of wastewater and economic analysis studies.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Águas Residuárias , Biodegradação Ambiental , Modelos Teóricos , Adsorção , Cinética , Água
5.
Int J Phytoremediation ; 26(6): 882-893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37933838

RESUMO

Due to industrialization and urbanization, the use of detergents inadvertently led to contamination of aquatic environments, thus posing potential threat to aquatic organisms and human health. One of the main components of detergents is linear alkylbenzene sulfonate (LAS), which can cause toxic effects on living organisms, particularly aquatic life in the environment. In this study, floating treatment wetlands (FTWs) mesocosms were developed and augmented with LAS-degrading bacteria. The plant species, Brachiaria mutica (Para grass), was vegetated to establish FTWs and bacterial consortium (1:1:1:1) of Pseudomonas aeruginosa strain PJRS20, Bacillus sp. BRRH60, Acinetobacter sp. strain CYRH21, and Burkholderia phytofirmans Ps.JN was augmented (free or immobilized) in these mesocosms. Results revealed that the FTWs removed LAS from the contaminated water and their augmentation with bacteria slightly increased LAS removal during course of the experiment. Maximum reduction in LAS concentration (94%), chemical oxygen demand (91%), biochemical oxygen demand (93%), and total organic carbon (91%) was observed in the contaminated water having FTWs augmented with bacterial consortium immobilized on polystyrene sheet. This study highlights that the FTWs supported with immobilized bacteria on polystyrene sheets can provide an eco-friendly and sustainable solution for the remediation of LAS-bearing water, especially for developing countries like Pakistan.


This pilot-scale study provided insights to resolve the detergent-contaminated wastewater issue, using floating treatment wetlands (FTWs) augmented with bacteria. The FTWs augmented with bacteria immobilized on a polystyrene sheet and vegetated with Brachiaria mutica led to high degradation of LAS, a toxic compound of detergent, from the contaminated water.


Assuntos
Detergentes , Poluentes Químicos da Água , Humanos , Áreas Alagadas , Poliestirenos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Bactérias , Água
6.
J Pak Med Assoc ; 74(1 (Supple-2)): S19-S24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385466

RESUMO

Objectives: To determine serum levels of brain-derived neurotrophic factor and its polymorphism rs12291063 in schizophrenic patients. METHODS: The case-control study was conducted from January1, 2020, to May 15, 2021, at Dr Abdul Qadeer Khan Institute of Behavioural Sciences, Dow University of Health Sciences, Karachi, and comprised schizophrenia cases aged 14-60 years who were diagnosed using Diagnostic and Statistical Manual of Mental Disorders-V criteria, and healthy controls without any psychiatric illness. Positive and negative syndrome scale score was used to assess disease severity. The genomic deoxyribonucleic acid of the subjects was isolated from peripheral blood, followed by polymerase chain reaction, gel electrophoresis and sequencing of the amplicons. The sequences were analysed using MEGA X software for genotyping. Serum brain-derived neurotrophic factor levels were assessed using enzyme-linked immunosorbent assay. Data was analysed using SPSS 21. RESULTS: Of the 100 subjects, 50(50%) were cases; 36(72%) males and 14(28%) females (p<0.05) with mean age 34.34±10.32 years. There were 50(50%) controls; 32(64%) males and 18(36%) females (p=0.391) with mean age 30.886±8.88 years. Among the cases, the mean age at schizophrenia diagnosis was 25.14±9.54 years, and there was a significant association with positive family history for psychiatric disorders (p<0.05). Sequencing revealed no T>C substitution. Serum brain-derived neurotrophic factor levels were significantly higher in cases compared to controls (p<0.001). There was a weak negative correlation between brain-derived neurotrophic factor levels and positive and negative syndrome scale score (p<0.05). CONCLUSIONS: Higher brain-derived neurotrophic factor levels were found to be associated with schizophrenia, while no association of rs12291063 T>C was found with schizophrenia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Casos e Controles , Polimorfismo Genético , Esquizofrenia/genética
7.
Int J Phytoremediation ; 25(9): 1155-1164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355569

RESUMO

In this study, we explored the potential of a newly prepared nano-zero valent zinc (nZVZn), biochar (BC)/nZVZn and BC/hydroxyapatite-alginate (BC/HA-alginate) composites for the removal of inorganic As species from water. Relatively, higher percentage removal of As(III) and As(V) was obtained by nZVZn at pH 3.4 (96% and 94%, respectively) compared to BC/nZVZn (90% and 88%) and BC/HA-alginate (88% and 80%) at pH 7.2. Freundlich model provided the best fit (R2 = up to 0.98) for As(III) and As(V) sorption data of all the sorbents, notably for nZVZn. The pseudo-second order model well-described kinetics of As(III) and As(V) (R2 = 0.99) sorption on all the sorbents. The desorption experiments demonstrated that the As removal efficiency, up to the third sorption/desorption cycle, was in the order of nZVZn ∼ BC/HA-alginate (88%) > BC/nZVZn (84%). The Fourier transform infrared spectroscopy depicted that the -OH, -COOH, Zn-O and Zn-OH surface functional groups were responsible for the sorption of As(III) or As(V) on the sorbents investigated here. This study highlights that removal of As species from water by BC/nZVZn composite can be compared with nZVZn, suggesting that integrating BC with nZVZn could efficiently remove As from As-contaminated drinking water.


This is the first study to explore the potential of a newly prepared sugarcane bagasse biochar/nano-zerovalent zinc (BC/nZVZn) based composite for the removal of inorganic arsenic (As) species from water. The results indicated high percentage removal of As(III) and As(V) from water by BC/nZVZn that were comparable to nZVZn alone.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Zinco , Poluentes Químicos da Água/química , Adsorção , Purificação da Água/métodos , Biodegradação Ambiental , Carvão Vegetal/química , Água , Cinética
8.
Environ Geochem Health ; 45(2): 507-523, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35022880

RESUMO

Climate change is a global challenge that is accelerated by contamination with hazardous substances like arsenic (As), posing threat to the agriculture, ecosystem and human health. Here, we explored the impact of various ameliorants on geochemical distribution of As in two soils with contrasting textures (sandy clay loam (Khudpur Village) and clay loam (Mattital Village)) under paddy soil conditions and their influence on the CO2-carbon efflux. The exchangeable As pool in clay loam soil increased as: lignite (0.4%) < biogas slurry (6%) < cow dung (9%), and < biochar (20%). However, in the sandy clay loam soil exchangeable soil As pool was found to be maximum with farmyard manure followed by biogas slurry, biochar and cow dung (17%, 14%, 13% and 7%, respectively). Interestingly, in the sandy clay loam soil the percentage As distribution in organic fraction was: biochar (38%) > cow dung (33%) > biogas slurry (23%) > sugarcane bagasse (22%) > farmyard manure (21%) that was higher compared to the clay loam soil (< 6% for all the amendments). In addition to the highest As immobilization by biochar in sandy clay loam soil, it also led to the lowest CO2-carbon efflux (1470 CO2-C mg kg-1) among all the organic/inorganic amendments. Overall, the current study advances our understanding on the pivotal role of organic amendments, notably biochar, in immobilizing As under paddy soil conditions with low (CO2) carbon loss, albeit it is dependent on soil and ameliorant types.


Assuntos
Arsênio , Saccharum , Humanos , Solo/química , Carbono , Argila/química , Celulose , Dióxido de Carbono , Esterco , Ecossistema , Biocombustíveis , Carvão Vegetal/química , Areia
9.
Environ Geochem Health ; 45(12): 8929-8942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35948700

RESUMO

The risk assessment of trace elements has received substantial attention for the achievement of UN Sustainable Developmental Goals (UN-SDGs). The present study aimed to evaluate health and ecological risks associated with trace element accumulation in Brassica oleracea under wastewater irrigations from three different areas. This study, for the first time, compared the pros and cons of mixed water crop irrigation (wastewater with fresh/groundwater). A pot experiment was conducted to evaluate the buildup of eight trace elements (As, Cu, Cd, Mn, Fe, Pb, Ni and Zn) in soil and B. oleracea plants irrigated with wastewater alone and mixed with fresh/groundwater. Specific ecological [degree of contamination (Cd), potential ecological risk index (PERI), pollution load index (PLI), geo-accumulation index (Igeo)], phytoaccumulation [bioconcentration factor (BCF) and transfer factor (TF)] and health risk models [chronic daily intake (CDI), hazard quotient (HQ), cancer risk (CR)] were applied to assess the overall contamination of trace elements in the soil-plant-human system. Moreover, these indices were compared with the literature data. The concentration of Cd, Fe and Mn exceeded the threshold limits of 10, 500 and 200 mg kg-1, respectively, for agricultural soil. Overall, all the irrigation waters caused significant pollution load in soil indicating high ecological risk (Cd > 24, PERI > 380, Igeo > 5, PLI > 2). Not all the mixing treatments caused a reduction in trace element buildup in soil. The mixing of wastewater-1 with either groundwater or freshwater increased trace element levels in the soil as well as risk indices compared to wastewater alone. The BCF and TF values were > 1, respectively, for 66% and 7% treatments. Trace element concentration in plants and associated health risk were minimized in mixed wastewater treatments. There were 22% and 32% reduction in HQ and CR when wastewater was mixed with freshwater and 29% and 8% when mixed with groundwater. Despite total reduction, a great variation in % change in risk indices was observed with respect to the area of wastewater collection. Therefore, mixed water irrigation may be a good management strategy, but its recommendation depends on soil properties and composition of waters used for mixing. Moreover, it is recommended that the freshwater and wastewater of the particular area may be continuously monitored to avoid potential associated health hazards.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Oligoelementos , Humanos , Águas Residuárias , Solo , Monitoramento Ambiental/métodos , Oligoelementos/análise , Cádmio , Metais Pesados/análise , Poluentes do Solo/análise , Medição de Risco , Água
10.
Environ Geochem Health ; 45(12): 9017-9028, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36175704

RESUMO

Water contamination by arsenic (As) is widespread and is posing serious health threats globally. Hence, As removal techniques/adsorbents need to be explored to minimize potentials hazards of drinking As-contaminated waters. A column scale sorption experiment was performed to assess the potential of three biosorbents (tea waste, wheat straw and peanut shells) to remove As (50, 100, 200 and 400 µg L-1) from aqueous medium at a pH range of 5-8. The efficiency of agricultural biosorbents to remove As varies greatly regarding their type, initial As concentration in water and solution pH. It was observed that all of the biosorbents efficiently removed As from water samples. The maximum As removal (up to 92%) was observed for 400 µg L-1 initial As concentration. Noticeably, at high initial As concentrations (200 and 400 µg L-1), low pH (5 and 6) facilitates As removal. Among the three biosorbents, tea waste biosorbent showed substantial ability to minimize health risks by removing As (up to 92%) compared to peanut shells (89%) and wheat straw (88%). Likewise, the values of evaluated risk parameters (carcinogenic and non-carcinogenic risk) were significantly decreased (7-92%: average 66%) after biosorption experiment. The scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray and X-ray diffraction analyses confirmed the potential of biosorbents to remediate As via successful loading of As on their surfaces. Hence, it can be concluded that synthesized biosorbents exhibit efficient and ecofriendly potential for As removal from contaminated water to minimize human health risk.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Humanos , Arsênio/análise , Adsorção , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água , Medição de Risco , Chá , Cinética , Concentração de Íons de Hidrogênio
11.
Environ Monit Assess ; 195(3): 438, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862255

RESUMO

Untreated wastewater is routinely used for agricultural activities in water-stressed regions, thereby causing severe ecological risks by various pollutants. Hence, management strategies are needed to cope with the environmental issues related to wastewater use in agriculture. This pot study evaluates the effect of mixing either freshwater (FW) or groundwater (GW) with sewage water (SW) on the buildup of potentially toxic elements (PTEs) in soil and maize crop. Results revealed that SW of Vehari contains high levels of Cd (0.08 mg L-1) and Cr (2.3 mg L-1). Mixing of FW and GW with SW increased soil contents of As (22%) and decreased Cd (1%), Cu (1%), Fe (3%), Mn (9%), Ni (9%), Pb (10%), and Zn (4%) than SW "alone" treatment. Risk indices showed high-degree of soil-contamination and very-high ecological risks. Maize accumulated considerable concentrations of PTEs in roots and shoot with bioconcentration factor > 1 for Cd, Cu, and Pb and transfer factor > 1 for As, Fe, Mn, and Ni. Overall, mixed treatments increased plant contents of As (118%), Cu (7%), Mn (8%), Ni (55%), and Zn (1%), while decreased those of Cd (7%), Fe (5%), and Pb (1%) compared to SW "alone" treatments. Risk indices predicted possible carcinogenic risks to cow (CR 0.003 > 0.0001) and sheep (CR 0.0121 > 0.0001) due to consumption of maize fodder containing PTEs. Hence, to minimize possible environmental/health hazards, mixing of FW and GW with SW can be an effective strategy. However, the recommendation greatly depends on the composition of mixing waters.


Assuntos
Solo , Águas Residuárias , Bovinos , Feminino , Animais , Ovinos , Zea mays , Cádmio , Chumbo , Monitoramento Ambiental , Água Doce , Água , Esgotos
12.
Environ Res ; 214(Pt 3): 114033, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952735

RESUMO

There are scarce data about the accumulation pattern and risk assessment of potentially toxic elements (PTEs) in soil and associated potential ecological risks, especially in less-developed countries. This study aims to assess the pollution levels and potential ecological risks of PTEs (As, Cr, Cd, Cu, Ni, Mn, Pb and Zn) in wastewater-irrigated arable soils and different edible-grown plants in selected areas of Vehari, Pakistan. The results revealed that the values of PTEs in soil samples were higher than their respective limit values by 20% for As, 87% for Cd, 15% for Cu, 2% for Cr, 83% for Mn, 98% for Fe, and 7% for Zn. The values of soil risk indices such as the potential ecological risk (PERI >380 for all samples), pollution load index (PLI >4 for 94% of studied samples), and degree of contamination (Dc > 24 for all samples) showed severe soil contamination in the study area. Some vegetables exhibited a high metal accumulation index (e.g., 8.1 for onion), signifying potential associated health hazards. Thus, long-term wastewater irrigation has led to severe soil contamination, which can pose potential ecological risks via PTE accumulation in crops, particularly Cd. Therefore, to ensure food safety, frequent wastewater irrigation practices need to be minimized and managed in the study area.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio , Monitoramento Ambiental/métodos , Metais Pesados/análise , Metais Pesados/toxicidade , Paquistão , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Águas Residuárias
13.
Environ Geochem Health ; 44(6): 1827-1839, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34524606

RESUMO

Plant redox homeostasis governs the uptake, toxicity and tolerance mechanism of toxic trace elements and thereby elucidates the remediation potential of a plant. Moreover, plant toxicity/tolerance mechanisms control the trace element compartmentation in edible and non-edible plant organs as well as the associated health hazards. Therefore, it is imperative to unravel the cellular mechanism involved in trace element toxicity and tolerance. The present study investigated the toxicity and tolerance/detoxification mechanisms of four levels of arsenic (As(III): 0, 5, 25 and 125 µM) in Brassica oleracea under hydroponic cultivation. Increasing As levels significantly decreased the pigment contents (up to 68%) of B. oleracea. Plants under As stress showed an increase in H2O2 contents (up to 32%) in roots while a decrease (up to 72%) in leaves because As is mostly retained in plant roots, while less is translocated toward the shoot, as evident from the literature. Arsenic treatments caused lipid peroxidation both in the root and leaf cells. Against As-induced oxidative stress, B. oleracea plants mediated an increase in the activities of peroxidase and catalase. Contradictory, the ascorbate peroxidase and superoxide dismutase activities slightly decreased in the As-stressed plants. In conclusion and as evident from the literature data analysis, As exposure (especially high level, 125 µM) caused pigment toxicity and oxidative burst in B. oleracea. The ability of B. oleracea to tolerate As-induced toxicity greatly varied with applied treatment levels (As-125 being more toxic than lower levels), plant organ type (more toxicity in leaves than roots) and physiological response parameter (pigment contents more sensitive than other response variables). Moreover, the multivariate statistical analysis appeared to be a useful method to estimate plant response under stress and trace significant trends in the data set.


Assuntos
Arsênio , Brassica , Poluentes do Solo , Oligoelementos , Antioxidantes/metabolismo , Arsênio/análise , Arsênio/toxicidade , Brassica/metabolismo , Análise de Dados , Peróxido de Hidrogênio , Estresse Oxidativo , Folhas de Planta/química , Raízes de Plantas/metabolismo , Plantas/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Oligoelementos/análise
14.
Int J Phytoremediation ; 23(9): 899-910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395533

RESUMO

Maize (Zea mays L.) is considered as a potential energy-yielding crop which may respond to compost application for arsenic (As) phytoremediation depending on soil type and compost application levels in soil. Here, we explored compost-mediated As phytoremediation potential of maize in the two different textured soils (sandy loam soil and clay loam soil) at varying As (0-120 mg kg-1) and compost (0-2.5%) levels under glasshouse conditions. Results revealed that in the absence of compost maize plants grown at different soil As levels (0-120 mg kg-1) accumulated 1.20-1.71 times more As from sandy loam soil than that of clay loam soil. The compost addition in soil at all levels, with 120 mg kg-1 As enhanced As accumulation in maize plants in the clay loam soil by 13%, while it reduced As phyto-uptake by 27% in sandy loam soil. This may be due to an increase in phosphate-extractable (bioavailable) soil As content from 2.7 to 3.8 mg kg-1 in clay loam soil. The estimated daily intake (EDI) of As (0.03-0.15 µg g-1 of body weight day-1) was above the US EPA's standard value. Arsenic phytoremediation potential of the maize plants was found to be economical for sandy loam soil with 1% compost level and for clay loam soil at 2.5% compost level, suggesting soil type specific dose dependence of compost for As phytoremediation programs. Novelty statement: To our knowledge, the role of compost in economic feasibility of energy crops at contaminated soils in general, and in the growing of maize at As-contaminated soil in particular, has not been addressed, so far. Moreover, it is the first time to evaluate environmental and health risk of compost-mediated As phytoremediation in different soil types.This study provided new insights of economic evaluation and risk assessment in the phytoremediation and mechanisms of compost in biomass production of energy crop at different As concentration. These aspects in phytoremediation studies are imperative to understand for developing safe, cost-effective and soil specific remediation strategies.


Assuntos
Arsênio , Compostagem , Poluentes do Solo , Biodegradação Ambiental , Estudos de Viabilidade , Medição de Risco , Solo , Poluentes do Solo/análise , Zea mays
15.
Environ Geochem Health ; 43(12): 5037-5051, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33811285

RESUMO

Arsenic (As) contamination in soil-plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil-plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg-1) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure.


Assuntos
Arsênio , Poluentes do Solo , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Sulfatos , Zea mays
16.
Int J Phytoremediation ; 22(2): 111-126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31686525

RESUMO

Biochar is the low-cost and environmental-friendly material which has shown a great potential for separation of heavy metals from water. The previous studies have established a superior role of biochar over other materials, such as activated carbon and inorganic sorbents (iron based) in efficient removal of toxic heavy metals from aqueous systems. Among the various factors influencing heavy metals sorption ability of biochar, types of feedstock/biomass and pyrolysis temperature play a significant role. The goal of this review is to increase our understanding of heavy metals sorption behavior by biochars - this is important as heavy metals sorption is driven based on biochar type, heavy metals species which involve numerous mechanisms, including the physical binding, complexation, ion exchange, surface precipitation and electrostatic interactions. In addition, this review paper describes various approaches to improve heavy metal sorption capacity of biochars by steam and acids/bases activations and impregnation of biochar-based composites with minerals, organic compounds and carbon-rich materials. The physical/chemical activation of biochars can improve the surface area, thus leading to their improved functionality, while modification/pretreatment methods help in synthesizing composites using biochar as a supporting media to develop new sorbents with efficient surface attributes for heavy metals removal from aqueous solutions.


Assuntos
Carvão Vegetal , Metais Pesados , Adsorção , Biodegradação Ambiental , Água
17.
Int J Phytoremediation ; 19(11): 985-991, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28324662

RESUMO

The present study was conducted to explore arsenic (As) tolerance and phytostabilization potential of the two tree species, buttonwood (Conocarpus erectus) and eastern cottonwood (Populus deltoides). Both plant species were grown in pots and were exposed to various soil As levels (control, 5, 10, 15, and 20 mg kg-1). The plants were harvested after 9 months for the evaluation of growth parameters as well as root and shoot As concentrations. With increasing soil As levels, plant height stress tolerance index (PHSTI) was significantly decreased in both tree species, whereas root length stress tolerance index (RLSTI) and dry matter stress tolerance index (DMSTI) were not affected. Root and shoot As concentrations significantly increased in both tree species with increasing soil As levels. Translocation factor and bioconcentration factor were less than 1.0 for both plant species. This study revealed that both tree species are non-hyperaccumulators of As, but they could be used for phytostabilization of As-contaminated soils.


Assuntos
Arsênio , Biodegradação Ambiental , Populus , Poluentes do Solo , Arsênio/metabolismo , Combretaceae , Folhas de Planta/química , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Populus/fisiologia , Poluentes do Solo/metabolismo
18.
Int J Phytoremediation ; 19(11): 1037-1046, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28463566

RESUMO

The current study evaluated the effect of groundwater and wastewater irrigation on lead (Pb) accumulation in soil and vegetables, and its associated health implications. A pot experiment was conducted in which spinach (Spinacia oleracea), radish (Raphanus sativus), and cauliflower (Brassica oleracea) were irrigated with groundwater and wastewaters containing varying concentrations of Pb. Lead contents were measured in wastewaters, soils and root and shoot of vegetables. We also measured health risk index (HRI) associated with the use of vegetables irrigated by wastewaters. Results revealed that Pb contents in groundwater and wastewater samples (range: 0.18-0.31 mg/L) were below the permissible limits (0.5 mg/L) set by the Food and Agriculture Organization (FAO). Application of Pb-containing groundwater and wastewater increased Pb concentration in soil and vegetables. Lead concentrations in all soils ranged from 10 to 31 mg/kg and were below the permissible limits of 300 mg/kg set by the European Union. Significant Pb enrichment was observed in the soils whereby all types of vegetables were grown and assessed for Pb risk. Our data showed that Pb contents, in all three vegetables (21-28 mg/kg DW), were higher than the permissible Pb limit of FAO (5 mg/kg Dry Weight (DW)). The HRI values were > 1.0 for radish and cauliflower. It is proposed that Vehari city wastewater/groundwater must be treated prior to its use for irrigation to avoid vegetable contamination by Pb, and as such for reducing Pb-induced human health risk.


Assuntos
Biodegradação Ambiental , Água Subterrânea , Medição de Risco , Poluentes do Solo , Verduras , Irrigação Agrícola , Agricultura , Cidades , Monitoramento Ambiental , Humanos , Metais Pesados , Poluentes do Solo/efeitos adversos , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos , Águas Residuárias
19.
Int J Phytoremediation ; 19(7): 670-678, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28084797

RESUMO

In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg-1) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg-1) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg-1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.


Assuntos
Arsênio/metabolismo , Biodegradação Ambiental , Brassica napus , Poluentes do Solo/metabolismo , Mostardeira , Fosfatos
20.
Int J Phytoremediation ; 19(7): 605-613, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-27849143

RESUMO

In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L-1 and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g-1, respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R2 = 0.97) and O-mont (R2 = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the -OH, -COOH, -NH2, and for O-mont intercalated amines and -OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Musa/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Bentonita , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Soluções , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA