Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 16260-16272, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859258

RESUMO

Spiking neural networks (SNNs) are bio-inspired neural networks that - to an extent - mimic the workings of our brains. In a similar fashion, event-based vision sensors try to replicate a biological eye as closely as possible. In this work, we integrate both technologies for the purpose of classifying micro-particles in the context of label-free flow cytometry. We follow up on our previous work in which we used simple logistic regression with binary labels. Although this model was able to achieve an accuracy of over 98%, our goal is to utilize the system for a wider variety of cells, some of which may have less noticeable morphological variations. Therefore, a more advanced machine learning model like the SNNs discussed here would be required. This comes with the challenge of training such networks, since they typically suffer from vanishing gradients. We effectively apply the surrogate gradient method to overcome this issue achieving over 99% classification accuracy on test data for a four-class problem. Finally, rather than treating the neural network as a black box, we explore the dynamics inside the network and make use of that to enhance its accuracy and sparsity.


Assuntos
Citometria de Fluxo , Redes Neurais de Computação , Citometria de Fluxo/métodos , Aprendizado de Máquina , Humanos , Algoritmos
2.
Opt Express ; 32(12): 21681-21695, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859517

RESUMO

Coherent Ising machines (CIMs), leveraging the bistable physical properties of coherent light to emulate Ising spins, exhibit great potential as hardware accelerators for tackling complex combinatorial optimization problems. Recent advances have demonstrated that the performance of CIMs can be enhanced either by incorporating large random noise or higher-order nonlinearities, yet their combined effects on CIM performance remain mainly unexplored. In this work, we develop a numerical CIM model that utilizes a tunable fifth-order polynomial nonlinear dynamic function under large noise levels, which has the potential to be implemented in all-optical platforms. We propose a normal form of a CIM model that allows for both supercritical and subcritical pitchfork bifurcation operational regimes, with fifth-order nonlinearity and tunable hyperparameters to control the Ising spin dynamics. In the benchmark studies, we simulate various sets of MaxCut problems using our fifth-order polynomial CIM model. The results show a significant performance improvement, achieving an average of 59.5% improvement in median time-to-solution (TTS) and an average of 6 times improvement in median success rate (SR) for dense Maxcut problems in the BiqMac library, compared to the commonly used third-order polynomial CIM model with low noise. The fifth-order polynomial CIM model in the large-noise regime also shows better performance trends as the problem size scales up. These findings reveal the enhancements on the computational performance of Ising machines in the large-nose regime from fifth-order nonlinearity, showing important implications for both simulation and hardware perspectives.

3.
Opt Express ; 31(22): 37325-37335, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017864

RESUMO

Spiking Neural Networks, also known as third generation Artificial Neural Networks, have widely attracted more attention because of their advantages of behaving more biologically interpretable and being more suitable for hardware implementation. Apart from using traditional synaptic plasticity, neural networks can also be based on threshold plasticity, achieving similar functionality. This can be implemented using e.g. the Bienenstock, Cooper and Munro rule. This is a classical unsupervised learning mechanism in which the threshold is closely related to the output of the post-synaptic neuron. We show in simulations that the threshold characteristics of the nonlinear effects of a microring resonator integrated with Ge2Sb2Te5 demonstrate some complex dependencies on the intracavity refractive index, attenuation, and wavelength detuning of the incident optical pulse, and exhibit class II excitability. We also show that we are able to modify the threshold power of the microring resonator by the changes of the refractive index and loss of Ge2Sb2Te5, due to transitions between the crystalline and amorphous states. Simulations show that the presented device exhibits both excitatory and inhibitory learning behavior, either lowering or raising the threshold.

4.
Opt Express ; 31(21): 34843-34854, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859231

RESUMO

Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of photonic reservoir computing over other neuromorphic paradigms is its straightforward readout system, which facilitates both rapid training and robust, fabrication variation-insensitive photonic integrated hardware implementation for real-time processing. We present our recent development of a fully-optical, coherent photonic reservoir chip integrated with an optical readout system, capitalizing on these benefits. Alongside the integrated system, we also demonstrate a weight update strategy that is suitable for the integrated optical readout hardware. Using this online training scheme, we successfully solved 3-bit header recognition and delayed XOR tasks at 20 Gbps in real-time, all within the optical domain without excess delays.

5.
Opt Express ; 30(8): 13434-13446, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472955

RESUMO

In photonic reservoir computing, semiconductor lasers with delayed feedback have shown to be suited to efficiently solve difficult and time-consuming problems. The input data in this system is often optically injected into the reservoir. Based on numerical simulations, we show that the performance depends heavily on the way that information is encoded in this optical injection signal. In our simulations we compare different input configurations consisting of Mach-Zehnder modulators and phase modulators for injecting the signal. We observe far better performance on a one-step ahead time-series prediction task when modulating the phase of the injected signal rather than only modulating its amplitude.

6.
Opt Express ; 30(9): 15634-15647, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473279

RESUMO

Existing work on coherent photonic reservoir computing (PRC) mostly concentrates on single-wavelength solutions. In this paper, we discuss the opportunities and challenges related to exploiting the wavelength dimension in integrated photonic reservoir computing systems. Different strategies are presented to be able to process several wavelengths in parallel using the same readout. Additionally, we present multiwavelength training techniques that allow to increase the stable operating wavelength range by at least a factor of two. It is shown that a single-readout photonic reservoir system can perform with ≈0% BER on several WDM channels in parallel for bit-level tasks and nonlinear signal equalization. This even when taking manufacturing deviations and laser wavelength drift into account.

7.
Opt Express ; 30(25): 44943-44953, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522907

RESUMO

A programmable hardware implementation of all-optical nonlinear activation functions for different scenarios and applications in all-optical neural networks is essential. We demonstrate a programmable, low-loss all-optical activation function device based on a silicon micro-ring resonator loaded with phase change materials. Four different nonlinear activation functions of Relu, ELU, Softplus and radial basis functions are implemented for incident signal light of the same wavelength. The maximum power consumption required to switch between the four different nonlinear activation functions in calculation is only 1.748 nJ. The simulation of classification of hand-written digit images also shows that they can perform well as alternative nonlinear activation functions. The device we design can serve as nonlinear units in photonic neural networks, while its nonlinear transfer function can be flexibly programmed to optimize the performance of different neuromorphic tasks.

8.
Opt Express ; 30(14): 25177-25194, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237054

RESUMO

The photonics platform has been considered increasingly promising for neuromorphic computing, due to its potential in providing low latency and energy efficient large-scale parallel connectivity. Phase change materials (PCMs) have been recently employed to introduce all-optical non-volatile memory in integrated photonic circuits, especially finding application as non-volatile weighting element in photonic artificial neural networks. Interestingly, these weighting elements can potentially be used as building blocks for large-scale networks that can autonomously adapt to their input, i.e. presenting the property of plasticity, similarly to the biological brain. In this work, we develop a computationally efficient dynamical model of a silicon ring resonator (RR) enhanced by a phase change material, namely Ge2Sb2Te5 (GST). We do so starting from two existing dynamical models (of a silicon RR and of a GST thin film on a straight silicon waveguide), but extending the optical equations to properly account for the high absorption and asymmetry in the ring due to the phase change material. Our model accounts for silicon nonlinear effects due to free carriers and temperature, as well as for the phase change of GST, whose energy efficiency and optical contrast can be enhanced by the RR resonant behaviour. We also restructure the optical equations so that the model can be efficiently employed in a modular way within a commercial software for system-level photonics simulations. Moreover, exploiting the developed model, we explore several design parameters and show that both speed and energy efficiency of memory operations can be enhanced by factors from six to ten. Also, we show that the achievable optical contrast due to GST phase change can be increased by more than a factor ten by leveraging the resonant properties of the RR, at the expense of higher optical loss. Finally, by exploiting the nonlinear dynamics arising in silicon RR networks, we show that a strong contrast is achievable while preserving energy efficiency.

9.
Opt Express ; 29(20): 30991-30997, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615201

RESUMO

Nonlinearity mitigation in optical fiber networks is typically handled by electronic Digital Signal Processing (DSP) chips. Such DSP chips are costly, power-hungry and can introduce high latencies. Therefore, optical techniques are investigated which are more efficient in both power consumption and processing cost. One such a machine learning technique is optical reservoir computing, in which a photonic chip can be trained on certain tasks, with the potential advantages of higher speed, reduced power consumption and lower latency compared to its electronic counterparts. In this paper, experimental results are presented where nonlinear distortions in a 32 GBPS OOK signal are mitigated to below the 0.2 × 10-3 FEC limit using a photonic reservoir. Furthermore, the results of the reservoir chip are compared to a tapped delay line filter to clearly show that the system performs nonlinear equalisation.

10.
Opt Express ; 28(3): 3086-3096, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121983

RESUMO

Photonic delay-based reservoir computing (RC) has gained considerable attention lately, as it allows for simple technological implementations of the RC concept that can operate at high speed. In this paper, we discuss a practical, compact and robust implementation of photonic delay-based RC, by integrating a laser and a 5.4 cm delay line on an InP photonic integrated circuit. We demonstrate the operation of this chip with 23 nodes at a speed of 0.87 GSa/s, showing performances that is similar to previous non-integrated delay-based setups. We also investigate two other post-processing methods to obtain more nodes in the output layer. We show that these methods improve the performance drastically, without compromising the computation speed.

11.
Opt Express ; 26(7): 7955-7964, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715770

RESUMO

We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.

12.
Opt Express ; 25(24): 30526-30538, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221080

RESUMO

The computational power required to classify cell holograms is a major limit to the throughput of label-free cell sorting based on digital holographic microscopy. In this work, a simple integrated photonic stage comprising a collection of silica pillar scatterers is proposed as an effective nonlinear mixing interface between the light scattered by a cell and an image sensor. The light processing provided by the photonic stage allows for the use of a simple linear classifier implemented in the electric domain and applied on a limited number of pixels. A proof-of-concept of the presented machine learning technique, which is based on the extreme learning machine (ELM) paradigm, is provided by the classification results on samples generated by 2D FDTD simulations of cells in a microfluidic channel.


Assuntos
Holografia/métodos , Aprendizado de Máquina , Algoritmos , Fenômenos Fisiológicos Celulares
13.
Sci Rep ; 14(1): 12322, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811683

RESUMO

Over the last decade, researchers have studied the interplay between quantum computing and classical machine learning algorithms. However, measurements often disturb or destroy quantum states, requiring multiple repetitions of data processing to estimate observable values. In particular, this prevents online (real-time, single-shot) processing of temporal data as measurements are commonly performed during intermediate stages. Recently, it was proposed to sidestep this issue by focusing on tasks with quantum output, eliminating the need for detectors. Inspired by reservoir computers, a model was proposed where only a subset of the internal parameters are trained while keeping the others fixed at random values. Here, we also process quantum time series, but we do so using a Recurrent Gaussian Quantum Network (RGQN) of which all internal interactions can be trained. As expected, this increased flexibility yields higher performance in benchmark tasks. Building on this, we show that the RGQN can tackle two quantum communication tasks, while also removing some hardware restrictions of the currently available methods. First, our approach is more resource efficient to enhance the transmission rate of quantum channels that experience certain memory effects. Second, it can counteract similar memory effects if they are unwanted, a task that could previously only be solved when redundantly encoded input signals could be provided. Finally, we run a small-scale version of the last task on Xanadu's photonic processor Borealis.

14.
Nat Commun ; 15(1): 2056, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448438

RESUMO

Reservoir computing originates in the early 2000s, the core idea being to utilize dynamical systems as reservoirs (nonlinear generalizations of standard bases) to adaptively learn spatiotemporal features and hidden patterns in complex time series. Shown to have the potential of achieving higher-precision prediction in chaotic systems, those pioneering works led to a great amount of interest and follow-ups in the community of nonlinear dynamics and complex systems. To unlock the full capabilities of reservoir computing towards a fast, lightweight, and significantly more interpretable learning framework for temporal dynamical systems, substantially more research is needed. This Perspective intends to elucidate the parallel progress of mathematical theory, algorithm design and experimental realizations of reservoir computing, and identify emerging opportunities as well as existing challenges for large-scale industrial adoption of reservoir computing, together with a few ideas and viewpoints on how some of those challenges might be resolved with joint efforts by academic and industrial researchers across multiple disciplines.

15.
Opt Express ; 21(14): 16955-63, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938544

RESUMO

Silicon-on-insulator microring resonators have proven to be an excellent platform for label-free nanophotonic biosensors. The high index contrast of silicon-on-insulator allows for fabrication of micrometer-size sensors. However, it also limits the quality of the resonances by introducing an intrinsic mode-splitting. Backscattering of optical power at small waveguide variations lifts the degeneracy of the normal resonator modes. This severely deteriorates the quality of the output signal, which is of utmost importance to determine the performance of the microrings as a biosensor. We suggest an integrated interferometric approach to give access to the unsplit, high-quality normal modes of the microring resonator and experimentally show an improvement of the quality factor by a factor of 3.


Assuntos
Técnicas Biossensoriais/instrumentação , Interferometria/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Integração de Sistemas
16.
Opt Express ; 21(23): 28922-32, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514406

RESUMO

Recently, we have theoretically demonstrated that optically injected microdisk lasers can be tuned in a class I excitable regime, where they are sensitive to both inhibitory and excitatory external input pulses. In this paper, we propose, using simulations, a topology that allows the disks to react on excitations from other disks. Phase tuning of the intermediate connections allows to control the disk response. Additionally, we investigate the sensitivity of the disk circuit to deviations in driving current and locking signal wavelength detuning. Using state-of-the-art fabrication techniques for microdisk laser, the standard deviation of the lasing wavelength is still about one order of magnitude too large. Therefore, compensation techniques, such as wavelength tuning by heating, are necessary.

17.
Opt Express ; 21(22): 26182-91, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216842

RESUMO

We demonstrate class I excitability in optically injected microdisk lasers, and propose a possible optical spiking neuron design. The neuron has a clear threshold and an integrating behavior, leading to an output rate-input rate dependency that is comparable to the characteristic of sigmoidal artificial neurons. We also show that the optical phase of the input pulses has influence on the neuron response, and can be used to create inhibitory, as well as excitatory perturbations.

18.
Sci Rep ; 13(1): 21399, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049625

RESUMO

Photonics-based computing approaches in combination with wavelength division multiplexing offer a potential solution to modern data and bandwidth needs. This paper experimentally takes an important step towards wavelength division multiplexing in an integrated waveguide-based photonic reservoir computing platform by using a single set of readout weights for up to at least 3 ITU-T channels to efficiently scale the data bandwidth when processing a nonlinear signal equalization task on a 28 Gbps modulated on-off keying signal. Using multiple-wavelength training, we obtain bit error rates well below that of the [Formula: see text] forward error correction limit at high fiber input powers of 18 dBm, which result in high nonlinear distortion. The results of the reservoir chip are compared to a tapped delay line filter and clearly show that the system performs nonlinear equalization. This was achieved using only limited post processing which in future work can be implemented in optical hardware as well.

19.
Opt Express ; 20(1): A39-50, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22379677

RESUMO

We theoretically investigate and compare the influence of square silver gratings and one-dimensional photonic crystal (1D PC) based nanostructures on the light absorption of organic solar cells with a thin active layer. We show that, by integrating the grating inside the active layer, excited localized surface plasmon modes may cause strong field enhancement at the interface between the grating and the active layer, which results in broadband absorption enhancement of up to 23.4%. Apart from using silver gratings, we show that patterning a 1D PC on top of the device may also result in a comparable broadband absorption enhancement of 18.9%. The enhancement is due to light scattering of the 1D PC, coupling the incoming light into 1D PC Bloch and surface plasmon resonance modes.


Assuntos
Fontes de Energia Elétrica , Membranas Artificiais , Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Energia Solar , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
20.
Opt Express ; 20(18): 20292-308, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037081

RESUMO

To emulate a spiking neuron, a photonic component needs to be excitable. In this paper, we theoretically simulate and experimentally demonstrate cascadable excitability near a self-pulsation regime in high-Q-factor silicon-on-insulator microrings. For the theoretical study we use Coupled Mode Theory. While neglecting the fast energy and phase dynamics of the cavity light, we can still preserve the most important microring dynamics, by only keeping the temperature difference with the surroundings and the amount of free carriers as dynamical variables of the system. Therefore we can analyse the microring dynamics in a 2D phase portrait. For some wavelengths, when changing the input power, the microring undergoes a subcritical Andronov-Hopf bifurcation at the self-pulsation onset. As a consequence the system shows class II excitability. Experimental single ring excitability and self-pulsation behaviour follows the theoretic predictions. Moreover, simulations and experiments show that this excitation mechanism is cascadable.


Assuntos
Potenciais de Ação/fisiologia , Biomimética/instrumentação , Modelos Neurológicos , Neurônios/fisiologia , Dispositivos Ópticos , Animais , Simulação por Computador , Retroalimentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA