Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Rapid Commun Mass Spectrom ; 37(13): e9508, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37072155

RESUMO

RATIONALE: Boron isotopes are a powerful tool for pH reconstruction in marine carbonates and as a tracer for fluid-mineral interaction in geochemistry. Microanalytical approaches based on laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) often suffer from effects induced by the sample matrix. In this study, we investigate matrix-independent analyses of B isotopic ratios and apply this technique to cold-water corals. METHODS: We employ a customized 193 nm femtosecond laser ablation system (Solstice, Spectra-Physics) coupled to a MC-ICP-MS system (Nu Plasma II, Nu Instruments) equipped with electron multipliers for in situ measurements of B isotopic ratios (11 B/10 B) at the micrometric scale. We analyzed various reference materials of silicate and carbonate matrices using non-matrix matched calibration without employing any correction. This approach was then applied to investigate defined increments in coral samples from a Chilean fjord. RESULTS: We obtained accurate B isotopic ratios with a reproducibility of ±0.9‰ (2 SD) for various reference materials including silicate glasses (GOR132-G, StHs6/80-G, ATHO-G and NIST SRM 612), clay (IAEA-B-8) and carbonate (JCp-1) using the silicate glass NIST SRM 610 as calibration standard, which shows that neither laser-induced nor ICP-related matrix effects are detectable. The application to cold-water corals (Desmophyllum dianthus) reveals minor intra-skeleton variations in δ11 B with average values between 23.01‰ and 25.86‰. CONCLUSIONS: Our instrumental set-up provides accurate and precise B isotopic ratios independently of the sample matrix at the micrometric scale. This approach opens a wide field of application in geochemistry, including pH reconstruction in biogenic carbonates and deciphering processes related to fluid-mineral interaction.


Assuntos
Antozoários , Dianthus , Terapia a Laser , Animais , Boro/análise , Espectrometria de Massas/métodos , Antozoários/química , Reprodutibilidade dos Testes , Isótopos/análise , Carbonatos/análise , Lasers , Silicatos
2.
Proc Natl Acad Sci U S A ; 116(10): 4111-4116, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782789

RESUMO

Although the emergence of complex biomineralized forms has been investigated for over a century, still little is known on how single cells control morphology of skeletal structures, such as frustules, shells, spicules, or scales. We have run experiments on the shell formation in foraminifera, unicellular, mainly marine organisms that can build shells by successive additions of chambers. We used live imaging to discover that all stages of chamber/shell formation are controlled by dedicated actin-driven pseudopodial structures. Successive reorganization of an F-actin meshwork, associated with microtubular structures, is actively involved in formation of protective envelope, followed by dynamic scaffolding of chamber morphology. Then lamellar dynamic templates create a confined space and control mineralization separated from seawater. These observations exclude extracellular calcification assumed in selected foraminiferal clades, and instead suggest a semiintracellular biomineralization pattern known from other unicellular calcifying and silicifying organisms. These results give a challenging prospect to decipher the vital effect on geochemical proxies applied to paleoceanographic reconstructions. They have further implications for understanding multiscale complexity of biomineralization and show a prospect for material science applications.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Biomineralização/fisiologia , Foraminíferos/metabolismo , Proteínas de Protozoários/metabolismo
3.
Glob Chang Biol ; 22(12): 3888-3900, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27279327

RESUMO

Shelled pteropods play key roles in the global carbon cycle and food webs of various ecosystems. Their thin external shell is sensitive to small changes in pH, and shell dissolution has already been observed in areas where aragonite saturation state is ~1. A decline in pteropod abundance has the potential to disrupt trophic networks and directly impact commercial fisheries. Therefore, it is crucial to understand how pteropods will be affected by global environmental change, particularly ocean acidification. In this study, physiological and molecular approaches were used to investigate the response of the Mediterranean pteropod, Heliconoides inflatus, to pH values projected for 2100 under a moderate emissions trajectory (RCP6.0). Pteropods were subjected to pHT 7.9 for 3 days, and gene expression levels, calcification and respiration rates were measured relative to pHT 8.1 controls. Gross calcification decreased markedly under low pH conditions, while genes potentially involved in calcification were up-regulated, reflecting the inability of pteropods to maintain calcification rates. Gene expression data imply that under low pH conditions, both metabolic processes and protein synthesis may be compromised, while genes involved in acid-base regulation were up-regulated. A large number of genes related to nervous system structure and function were also up-regulated in the low pH treatment, including a GABAA receptor subunit. This observation is particularly interesting because GABAA receptor disturbances, leading to altered behavior, have been documented in several other marine animals after exposure to elevated CO2 . The up-regulation of many genes involved in nervous system function suggests that exposure to low pH could have major effects on pteropod behavior. This study illustrates the power of combining physiological and molecular approaches. It also reveals the importance of behavioral analyses in studies aimed at understanding the impacts of low pH on marine animals.


Assuntos
Calcificação Fisiológica , Gastrópodes/fisiologia , Concentração de Íons de Hidrogênio , Sistema Nervoso/metabolismo , Exoesqueleto , Animais , Ciclo do Carbono , Ecossistema , Cadeia Alimentar , Gastrópodes/metabolismo
4.
Mar Micropaleontol ; 113: 56-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26089590

RESUMO

Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for these proxy relationships are still unknown. This culture study investigates the impact of different seawater [Mg2 +] on calcification in two benthic foraminiferal species precipitating contrasting Mg/CaCC: Ammonia aomoriensis, producing low-Mg calcite and Amphistegina lessonii, producing intermediate-Mg calcite. Foraminiferal growth and test thickness were determined and, Mg/Ca was analyzed using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results show that at present-day seawater Mg/CaSW of ~ 5, both species have highest growth rates, reflecting their adaptation to modern seawater element concentrations. Test thickness is not significantly affected by different Mg/CaSW. The relationship between Mg/CaSW and Mg/CaCC shows a distinct positive y-axis intercept, possibly reflecting at least two processes involved in foraminiferal biomineralization. The associated Mg partition (DMg) changes non-linearly with increasing Mg/CaSW, hence suggesting that the DMg is best described by an exponential function approaching an asymptote.

5.
Elife ; 132024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150037

RESUMO

Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ 'mineralization of extracellular matrix' attributed to hyaline rotaliid shells, or 'mineralization within intracellular vesicles' attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.


Assuntos
Foraminíferos , Microscopia Eletrônica de Varredura , Foraminíferos/metabolismo , Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Biomineralização , Filogenia
6.
Heliyon ; 9(7): e18331, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519760

RESUMO

Calcium carbonate minerals produced by marine organisms play a central role in the global carbon cycle and carbonate sedimentation, which influence the climate by regulating atmospheric CO2 levels. Foraminifera are important marine single-celled organisms that have produced calcite shells for over 300 million years. Here, we present new observations promoting our understanding for foraminiferal biocalcification by studying Amphistegina lessonii. We integrated in vivo confocal autofluorescence and dye fluorescence imaging with elemental analysis of the cell supporting the concept that the calcite shells of foraminifera are produced via deposition of intracellularly formed Mg-rich amorphous calcium carbonate (Mg-ACC) particles that transform into a stable mineral phase. This process is likely accompanied by the activity of endosymbiotic microalgae and seawater-derived endocytic vesicles that provide calcification substrates such as DIC, Ca2+, and Mg2+. The final transformation of semi-liquid amorphous nanoparticles into a crystalline shell was associated with Mg2+ liberation.

7.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523983

RESUMO

The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation-the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.

8.
PLoS One ; 12(1): e0167891, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125590

RESUMO

Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT scanning.


Assuntos
Exoesqueleto/ultraestrutura , Carbonato de Cálcio/química , Dióxido de Carbono/química , Modelos Estatísticos , Exoesqueleto/metabolismo , Animais , Dióxido de Carbono/história , Mudança Climática/história , Gastrópodes/anatomia & histologia , Gastrópodes/metabolismo , História do Século XX , História do Século XXI , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Microscopia Eletrônica de Varredura , Salinidade , Água do Mar , Temperatura
9.
Mar Pollut Bull ; 74(2): 495-505, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23932473

RESUMO

The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing. The interactive effects of this deadly trio mirrors similar events in the Earth's past, which were often coupled with extinctions of major species' groups. Here we review the observed impacts and, using past episodes in the Earth's history, set out what the future may hold if carbon emissions and climate change are not significantly reduced with more or less immediate effect.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Poluição da Água/estatística & dados numéricos , Dióxido de Carbono/análise , Dióxido de Carbono/toxicidade , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química , Poluentes da Água/análise , Poluentes da Água/toxicidade , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA