Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 28(17): 6866-76, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22448779

RESUMO

We demonstrate the formation of molecular monolayers of π-conjugated organic molecules on nanocrystalline TiO(2) surfaces through the thermal grafting of benzyl and aryl halides. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to characterize the reactivity of aryl and benzyl chlorides, bromides, and iodides with TiO(2) surfaces, along with controls consisting of nonhalogenated compounds. Our results show that benzyl and aryl halides follow a similar reactivity trend (I > Br > Cl >> H). While the ability to graft benzyl halides is consistent with the well-known Williamson ether synthesis, the grafting of aryl halides has no similar precedent. The unique reactivity of the TiO(2) surface is demonstrated using nuclear magnetic resonance spectroscopy to compare the surface reactions with the liquid-phase interactions of benzyl and aryl iodides with tert-butanol and -butoxide anion. While the aryl iodides show no detectable reactivity with a tert-butanol/tert-butoxide mixture, they react with TiO(2) within 2 h at 50 °C. Atomic force microscopy studies show that grafting of 4-iodo-1-(trifluoromethyl)benzene onto the rutile TiO(2)(110) surface leads to a very uniform, homogeneous molecular layer with a thickness of ∼0.45 nm, demonstrating formation of a self-terminating molecular monolayer. Thermal grafting of aryl iodides provides a facile route to link π-conjugated molecules to TiO(2) surfaces with the shortest possible linkage between the conjugated electron system and the TiO(2).

2.
Langmuir ; 28(28): 10437-45, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22680252

RESUMO

While ZnO has excellent electrical properties, it has not been widely used for dye-sensitized solar cells, in part because ZnO is chemically less stable than widely used TiO(2). The functional groups typically used for surface passivation and for attaching dye molecules either bind weakly or etch the ZnO surface. We have compared the formation of molecular layers from alkane molecules with terminal carboxylic acid, alcohol, amine, phosphonic acid, or thiol functional groups on single-crystal zinc oxide (1010) surfaces. Atomic force microscopy (AFM) images show that alkyl carboxylic acids etch the surface whereas alkyl amine and alkyl alcohols bind only weakly on the ZnO(1010) surface. Phosphonic acid-terminated molecules were found to bind to the surface in a heterogeneous manner, forming clusters of molecules. Alkanethiols were found to bind to the surface, forming highly uniform monolayers with some etching detected after long immersion times in an alkanethiol solution. Monolayers of hexadecylphosphonic acid and octadecanethiol were further analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. AFM scratching shows that thiols were bound strongly to the ZnO surface, suggesting the formation of strong Zn-S covalent bonds. Surprisingly, the tridentate phosphonic acids adhered much more weakly than the monodentate thiol. The influence of organic grafting on the charge transfer to ZnO was studied by time-resolved surface photovoltage measurements and electrochemical impedance measurements. Our results show that the grafting of thiols to ZnO leads to robust surfaces and reduces the surface band bending due to midgap surface states.

3.
Langmuir ; 28(2): 1322-9, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22145802

RESUMO

Citric acid is a widely used surface-modifying ligand for growth and processing of a variety of nanoparticles; however, the inability to easily prepare derivatives of this molecule has restricted the development of versatile chemistries for nanoparticle surface functionalization. Here, we report the design and synthesis of a citric acid derivative bearing an alkyne group and demonstrate that this molecule provides the ability to achieve stable, multidentate carboxylate binding to metal oxide nanoparticles, while also enabling subsequent multistep chemistry via the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The broad utility of this strategy for the modular functionalization of metal oxide surfaces was demonstrated by its application in the CuAAC modification of ZnO, Fe(2)O(3), TiO(2), and WO(3) nanoparticles.


Assuntos
Ácido Cítrico/química , Metais/química , Óxidos/química , Catálise , Ligantes , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura , Propriedades de Superfície
4.
J Am Chem Soc ; 132(36): 12554-5, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20731348

RESUMO

A ruthenium-catalyzed, redox neutral C-O bond cleavage of 2-aryloxy-1-arylethanols was developed that yields cleavage products in 62-98% isolated yield. This reaction is applicable to breaking the key ethereal bond found in lignin-related polymers. The bond transformation proceeds by a tandem dehydrogenation/reductive ether cleavage. Initial mechanistic investigations indicate that the ether cleavage is most likely an organometallic C-O activation. A catalytic depolymerization of a lignin-related polymer quantitatively yields the corresponding monomer with no added reagent.


Assuntos
Etanol/síntese química , Lignina/química , Compostos Organometálicos/química , Rutênio/química , Catálise , Etanol/análogos & derivados , Etanol/química , Estrutura Molecular , Oxirredução , Estereoisomerismo
6.
ACS Nano ; 6(1): 310-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22196212

RESUMO

Metal oxides play a key role in many emerging applications in renewable energy, such as dye-sensitized solar cells and photocatalysts. Because the separation of charge can often be facilitated at junctions between different materials, there is great interest in the formation of heterojunctions between metal oxides. Here, we demonstrate use of the copper-catalyzed azide-alkyne cycloaddition reaction, widely referred to as "click" chemistry, to chemically assemble photoactive heterojunctions between metal oxide nanoparticles, using WO(3) and TiO(2) as a model system. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy verify the nature and selectivity of the chemical linkages, while scanning electron microscopy reveals that the TiO(2) nanoparticles form a high-density, conformal coating on the larger WO(3) nanoparticles. Time-resolved surface photoresponse measurements show that the resulting dyadic structures support photoactivated charge transfer, while measurements of the photocatalytic degradation of methylene blue show that chemical grafting of TiO(2) nanoparticles to WO(3) increases the photocatalytic activity compared with the bare WO(3) film.


Assuntos
Cobre/química , Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Óxidos/química , Titânio/química , Tungstênio/química , Alcinos/química , Azidas/química , Catálise , Cobre/efeitos da radiação , Luz , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Conformação Molecular/efeitos da radiação , Óxidos/efeitos da radiação , Tamanho da Partícula , Semicondutores , Propriedades de Superfície/efeitos da radiação , Titânio/efeitos da radiação , Tungstênio/efeitos da radiação
7.
ACS Appl Mater Interfaces ; 3(8): 3110-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21766849

RESUMO

We demonstrate the use of "click" chemistry to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) nanoparticle thin films. By using photochemical grafting to link a short-chain alcohol to the surface followed by conversion to a surface azide group, we enable use of the Cu(I)-catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC) reaction, a form of "click" chemistry, on metal oxide surfaces. Results are shown with three model compounds to test the surface chemistry and subsequent ability to achieve electrochemical and photoelectrochemical charge transfer. Surface-tethered ferrocene groups exhibit good electron-transfer characteristics with thermal rates estimated at >1000 s(-1). Time-resolved surface photovoltage measurements using a ruthenium terpyridyl coordination compound demonstrate photoelectron charge transfer on time scales of nanoseconds or less, limited by the laser pulse width. The results demonstrate that the CuAAC "click" reaction can be used to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) and other metal oxide semiconductors.


Assuntos
Compostos de Estanho/química , Catálise , Química Click , Complexos de Coordenação/química , Cobre/química , Técnicas Eletroquímicas , Compostos Ferrosos/química , Metalocenos , Nanopartículas/química , Rutênio/química , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA