Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Angew Chem Int Ed Engl ; 61(45): e202209894, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35946584

RESUMO

This Review provides a summary of the use and the role of coordination complexes as precursors for the generation of heterogeneous catalysts for oxidation reactions of interest for fine chemical synthesis. Specific attention is paid to the comprehension of phenomena explaining the formation of active sites in heterogeneous catalysts. Different families of coordination precursors are considered. For each example, a brief critical description of the synthesis, characterization, and catalytic performance is reported. Special attention is paid to the chemical environment of the first coordination sphere of the active metal centre. The catalysts obtained by heterogenization, grafting, or anchoring of homogeneous catalysts can therefore exhibit enhanced catalytic performance by merging advantages of both homogeneous and heterogeneous systems. The deposition of coordination complexes over a preformed support is indeed a conceptually versatile strategy to design novel catalysts with tuned and controlled properties.

2.
Chemistry ; 27(14): 4723-4730, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33368657

RESUMO

For the first time, the co-presence in the saponite structure of luminescent EuIII and catalytic NbV metal sites was exploited for the simultaneous detection and catalytic abatement of sulfur-containing blister chemical warfare agents. Metal centers were introduced in structural positions of the saponite (in the interlayer space or inside the inorganic framework) following two different synthetic methodologies. The functionalized saponites were able to reveal the presence of a sulfur mustard simulant (2-chloroethyl)ethyl sulfide (CEES) after few seconds of contact time and more than 80 % of the substrate was catalytically decomposed after 24 h in the presence of aqueous hydrogen peroxide.

3.
Inorg Chem ; 60(14): 10749-10756, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34237936

RESUMO

A novel bifunctional saponite clay incorporating gadolinium (Gd3+) and europium (Eu3+) in the inorganic framework was prepared by one-pot hydrothermal synthesis. The material exhibited interesting luminescent and paramagnetic features derived from the co-presence of the lanthanide ions in equivalent structural positions. Relaxometry and photoluminescence spectroscopy shed light on the chemical environment surrounding the metal sites, the emission properties of Eu3+, and the dynamics of interactions between Gd3+ and the inner-sphere water placed in the saponite gallery. The optical and paramagnetic properties of this solid make it an attractive nanoplatform for bimodal diagnostic applications.

4.
Molecules ; 26(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804572

RESUMO

This study focused on the application of mesoporous silica monoliths for the removal of organic pollutants. The physico-chemical textural and surface properties of the monoliths were investigated. The homogeneity of the textural properties along the entire length of the monoliths was assessed, as well as the reproducibility of the synthesis method. The adsorption properties of the monoliths for gaseous toluene, as a model of Volatile Organic Compounds (VOCs), were evaluated and compared to those of a reference meso-structured silica powder (MCM-41) of commercial origin. Silica monoliths adsorbed comparable amounts of toluene with respect to MCM-41, with better performances at low pressure. Finally, considering their potential application in water phase, the adsorption properties of monoliths toward Rhodamine B, selected as a model molecule of water soluble pollutants, were studied together with their stability in water. After 24 h of contact, the silica monoliths were able to adsorb up to the 70% of 1.5 × 10-2 mM Rhodamine B in water solution.


Assuntos
Poluentes Ambientais/isolamento & purificação , Gases/química , Compostos Orgânicos/isolamento & purificação , Dióxido de Silício/química , Compostos Orgânicos Voláteis/isolamento & purificação , Purificação da Água/métodos
5.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751159

RESUMO

Any release of radioactive cesium-137, due to unintentional accidents in nuclear plants, represents a dangerous threat for human health and the environment. Prussian blue has been widely studied and used as an antidote for humans exposed to acute internal contamination by Cs-137, due to its ability to act as a selective adsorption agent and to its negligible toxicity. In the present work, the synthesis protocol has been revisited avoiding the use of organic solvents to obtain Prussian blue nanoparticles with morphological and textural properties, which positively influence its Cs+ binding capacity compared to a commercially available Prussian blue sample. The reduction of the particle size and the increase in the specific surface area and pore volume values compared to the commercial Prussian blue reference led to a more rapid uptake of caesium in simulated enteric fluid solution (+35% after 1 h of contact). Then, after 24 h of contact, both solids were able to remove >98% of the initial Cs+ content. The Prussian blue nanoparticles showed a weak inhibition of the bacterial luminescence in the aqueous phase and no chronic detrimental toxic effects.


Assuntos
Césio/química , Descontaminação/métodos , Ferrocianetos/química , Nanopartículas/química , Adsorção , Bioensaio , Líquidos Corporais/química , Radioisótopos de Césio/química , Fenômenos Químicos , Humanos , Nanopartículas/ultraestrutura , Soluções , Análise Espectral
6.
Chem Soc Rev ; 47(15): 5684-5739, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30014075

RESUMO

Understanding the structure-property relationship of solids is of utmost relevance for efficient chemical processes and technological applications in industries. This contribution reviews the concept of coupling three well-known characterization techniques (solid-state NMR, FT-IR and computational methods) for the study of solid state materials which possess 2D and 3D architectures and discusses the way it will benefit the scientific communities. It highlights the most fundamental and applied aspects of the proactive combined approach strategies to gather information at a molecular level. The integrated approach involving multiple spectroscopic and computational methods allows achieving an in-depth understanding of the surface, interfacial and confined space processes that are beneficial for the establishment of structure-property relationships. The role of ssNMR/FT-IR spectroscopic properties of probe molecules in monitoring the strength and distribution of catalytic active sites and their accessibility at the porous/layered surface is discussed. Both experimental and theoretical aspects will be considered by reporting relevant examples. This review also identifies and discusses the progress, challenges and future prospects in the field of synthesis and applications of layered and porous solids.

7.
Chemphyschem ; 18(17): 2374-2380, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28654191

RESUMO

Determination of the molar absorption coefficients of the CH3 bending mode at ν˜ =1380 cm-1 (ϵ1380 ) of n-hexane adsorbed from the gas phase on two different dealuminated zeolites is derived by a combination of IR spectroscopy and microgravimetric analysis. High-silica zeolite Y (HSZ-Y) and zeolite ZSM-5 (with SiO2 /Al2 O3 ratios of 200 and 280, respectively) with different textural and surface features are selected to evaluate the effect of the pore structure and architecture on the value of ϵ1380 of the adsorbed n-hexane. Experimental data indicate that the molecule experiences a different adsorption environment inside zeolites; thus resulting in a significant change of the dipole moment and very different ϵ1380 values: (0.278±0.018) cm µmol-1 for HSZ-Y and (0.491±0.032) cm µmol-1 for ZSM-5. Experimental data are also supported by computational modeling, which confirms the effect of different matrices on the IR absorption intensity. This study reveals that the use of probe molecules for quantitative measurements of surface sites has to be judiciously adopted, especially if adsorption occurs in the restricted spaces of microporous materials.

8.
Angew Chem Int Ed Engl ; 53(38): 10095-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25056451

RESUMO

A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder.


Assuntos
Silicatos de Alumínio/química , Substâncias para a Guerra Química/química , Nióbio/química , Catálise , Argila , Estrutura Molecular , Oxirredução
9.
Dalton Trans ; 53(18): 7801-7811, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38623752

RESUMO

Transition and rare earth metals serve as indispensable raw materials across a broad spectrum of technological applications. However, their utilization is frequently linked to substantial waste production. Consequently, the recycling and recovery of these metals from end-of-life products or metal-contaminated aqueous environments hold significant importance within the framework of a circular economy. In our investigation, we employed synthetic mesoporous silica monoliths, synthesized via the sol-gel method and functionalized with chelating groups, for the efficient recovery of metal ions from aqueous matrices. The monoliths were characterized using a multi-technique approach and were tested in the recovery of paramagnetic Gd3+, Cu2+ and Co2+ ions from aqueous solutions, using 1H-NMR relaxometry to evaluate their uptake performance in real time and under simple conditions. Detailed information on the kinetics of the capture process was also highlighted. Finally, the possibility to regenerate the solid sorbents was evaluated.

10.
Dalton Trans ; 53(23): 9995-10006, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38814123

RESUMO

A set of organic/inorganic layered materials was obtained by functionalizing a montmorillonite-containing bentonite natural clay with linear aliphatic C6 or C7 aldehydes through a cost-effective and technologically simple incipient-wetness deposition method. The solids were investigated by means of a multi-technique approach (X-ray powder diffraction, XRPD, scanning electron microscopy, SEM, Fourier-transform infrared spectroscopy, FT-IR, thermogravimetric analysis, TGA, elemental analysis and solid-state nuclear magnetic resonance, ssNMR) to clarify the nature of the deposited organic species and the mode of interaction between the aldehyde and the clay. Since both natural clays and short-chain linear aldehydes find application as alternative strategies in the control of the olive fruit fly, Bactrocera oleae, the hybrid layered materials were tested under real-life conditions and their insect-inhibiting capability was evaluated in open-field trials on olive tree orchards in Tuscany, Central Italy. Specific tests were conducted to evaluate the resistance of the solids to weathering and their capability to provide a constant and long-lasting release of the bioactive ingredient. Aldehyde-containing bentonite clays have shown promising performance in controlling B. oleae infestation (with up to 86-95% reduction of affected olive fruits) in open-field trials across two years in two locations with different pedological and meteo-climatic characteristics.


Assuntos
Aldeídos , Olea , Tephritidae , Aldeídos/química , Animais , Olea/química , Olea/parasitologia , Argila/química , Bentonita/química , Inseticidas/química , Inseticidas/farmacologia
11.
Dalton Trans ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057836

RESUMO

Herein, initially, we present a general overview of the global financial support for chemistry devoted to materials science, specifically intercalation layered compounds (ILCs). Subsequently, the strategies to synthesise these host structures and the corresponding guest-host hybrid assemblies are exemplified on the basis of some families of materials, including pillared clays (PILCs), porous clay heterostructures (PCHs), zirconium phosphate (ZrP), layered double hydroxides (LDHs), graphite intercalation compounds (GICs), graphene-based materials, and MXenes. Additionally, a non-exhaustive survey on their possible application in the field of energy through electrochemical storage, mostly as electrode materials but also as electrolyte additives, is presented, including lithium technologies based on lithium ion batteries (LIBs), and beyond LiBs with a focus on possible alternatives such XIBs (X = Na (NIB), K (KIB), Al (AIB), Zn (ZIB), and Cl (CIB)), reversible Mg batteries (RMBs), dual-ion batteries (DIBs), Zn-air and Zn-sulphur batteries and supercapacitors as well as their relevance in other fields related to (opto)electronics. This selective panorama should help readers better understand the reason why ILCs are expected to meet the challenge of tomorrow as electrode materials.

12.
Dalton Trans ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046465

RESUMO

Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.

13.
Phys Chem Chem Phys ; 15(32): 13354-62, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23873523

RESUMO

Niobium-containing silica materials obtained by deposition via liquid-phase grafting or dry impregnation of niobocene(iv) dichloride are active and selective catalysts in the epoxidation of alkenes in the presence of aqueous hydrogen peroxide. The generation of the catalytically-active Nb species was followed step-by-step, and investigated using a combined DR-UV-Vis, NIR, Raman, XRD, XANES and EXAFS analyses. At the end of the grafting procedure, the nature of the surface active species can be described as an oxo-Nb(v) site, tripodally grafted onto the silica surface in close proximity to other Nb(v) centres. The liquid-phase methodology provides a better dispersion of the metal sites onto the siliceous support than the dry-impregnation approach. The niobium-silica catalysts were then tested in the epoxidation of cyclohexene and 1-methylcyclohexene, as model substrates.


Assuntos
Cicloparafinas/química , Ciclopentanos/química , Compostos de Epóxi/síntese química , Nióbio/química , Compostos Organometálicos/química , Dióxido de Silício/química , Catálise , Domínio Catalítico , Compostos de Epóxi/química
14.
Phys Chem Chem Phys ; 15(32): 13434-45, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23860861

RESUMO

Disaggregated magadiite was obtained through ion-exchange in acidic media from magadiite intercalated in the synthesis with cetyltrimethylamonium cations. The combination of Soxhlet extraction and ultrasound during the procedure resulted in different morphology and different properties when compared with the pristine material, as observed by SEM. Thermal and surface properties studies performed by VT-XRD, TG, VT-FTIR, HETCOR SS-NMR, and N2 physisorption show that disaggregated magadiite presents a basal space of 1.35 nm and that [SiO4] entities of adjacent magadiite silicate layers connect during ion-exchange under ultrasound. Despite these bonding events, the surface area increased from 20-26 m(2) g(-1) in CTA-magadiite to 55-72 m(2) g(-1) in disaggregated magadiite.

15.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839110

RESUMO

Different amounts of sodium-alendronate (ALN) were loaded into layered zirconium phosphates of alpha and gamma type (αZP and γZP) by means of topotactic exchange reactions of phosphate with ALN. In order to extend the exchange process to the less accessible interlayer regions, ALN solutions were contacted with colloidal dispersions of the layered solids previously exfoliated in single sheets by means of intercalation reaction of propylamine (for αZP) or acetone (for γZP). The ALN loading degree was determined by liquid P-nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP), and it was reported as ALN/Zr molar ratios (Rs). The maximum R obtained for γZP was 0.34, while αZP was able to load a higher amount of ALN, reaching Rs equal to 1. The synthesized compounds were characterized by X-ray powder diffractometry, scanning electron microscopy (SEM), solid-state NMR, and infrared spectroscopy. The way the grafted organo-phosphonate groups were bonded to the layers of the host structure was suggested. The effect of ZP derivatives was assessed on cell proliferation, and the results showed that after 7 days of incubation, none of the samples showed a decrease in cell proliferation.

16.
Inorg Chem ; 51(4): 2560-8, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22316278

RESUMO

Molecular iodine was intercalated from nonaqueous solution into microsized ZnAl-layered double hydroxide (LDH) in the iodide form, generating the I(3)(-)/I(-) redox couple into the interlayer region. Chloroform, ethanol, acetonitrile, or diethyl ether were used as solvents to dissolve the molecular iodine. The intercalation compounds were characterized by thermogravimetric analysis, X-ray powder diffraction, UV-vis spectroscopy, and scanning and transmission electron microscopy. The stability of iodine-solvent adducts and the iodine concentration affected the LDH iodine loading, and samples with I(2)/I(-) molar ratio ranging from 0.14 to 0.82 were prepared. Nanosized, well dispersible LDH, synthesized by the urea method in water-ethylene glycol media, were also prepared and successfully functionalized with the I(3)(-)/I(-) redox couple applying the conditions optimized for the micrometric systems.

17.
Nanotechnology ; 23(43): 435702, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23059798

RESUMO

Polymer light-emitting diodes (PLEDs) have attracted growing interest in recent years for their potential use in displays and lighting fields. Nevertheless, PLED devices have some disadvantages in terms of low optoelectronic efficiency, high cost, short lifetimes and low thermal stability, which limit their final applications. Huge efforts have been made recently to improve the performances of these devices. The addition of inorganic or hybrid organic-inorganic nanoparticles to the light-emitting polymers, for example, allows their thermal stability and electroluminescent efficiency to be increased. Following this approach, novel PLED devices based on composite films of PPV-derivative copolymer (commercial name Super Yellow, SY) and octaisobutil POSS, were developed in this study. The device containing Super Yellow loaded with 1 wt% of POSS showed higher efficiency (ca. +30%) and improved lifetime in comparison to PLED prepared with the pure electroluminescent polymer. The PLED devices developed in this study are suitable candidates for automotive dashboards and, in general, for lighting applications.

18.
Dalton Trans ; 51(11): 4502-4509, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35233589

RESUMO

The removal of paramagnetic metal ions with different charges and ionic radii (i.e. Gd3+, Cu2+, and Co2+) from aqueous solutions was carried out by using a Na+-exchanged synthetic saponite clay. Saponite, composed of sub-micrometer particles and characterized by high cation-exchange capacity, was prepared through a classical low-cost hydrothermal approach. The metal ion uptake tests were performed in water at pH = 5.5 and 3.0, and the capture process was monitored in real time by 1H-NMR relaxometry. The experimental data were confirmed by the conventional ICP-OES technique. Details of the uptake process kinetics were extrapolated from the NMR analyses as well. Saponite showed good sorption capacity for all selected metal ions. The regeneration of the solid sorbent after metal uptake was also analysed, obtaining encouraging results.

19.
Materials (Basel) ; 15(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431482

RESUMO

The synthesis and characterization of novel luminescent amorphous POSS-based polysilsesquioxanes (PSQs) with Tb3+ and Eu3+ ions directly integrated in the polysilsesquioxane matrix is presented. Two different Tb3+/Eu3+ molar ratios were applied, with the aim of disclosing the relationships between the nature and loading of the ions and the luminescence properties. Particular attention was given to the investigation of site geometry and hydration state of the metal centers in the inorganic framework, and of the effect of the Tb3+ → Eu3+ energy transfer on the overall optical properties of the co-doped materials. The obtained materials were characterized by high photostability and colors of the emitted light ranging from orange to deep red, as a function of both the Tb3+/Eu3+ molar ratio and the chosen excitation wavelength. A good energy transfer was observed, with higher efficiency displayed when donor/sensitizer concentration was lower than the acceptor/activator concentration. The easiness of preparation and the possibility to finely tune the photoluminescence properties make these materials valid candidates for several applications, including bioimaging, sensors, ratiometric luminescence-based thermometers, and optical components in inorganic or hybrid light-emitting devices.

20.
Langmuir ; 27(11): 7250-7, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21553926

RESUMO

An organo-saponite clay containing intercalated cetyltrimethylammonium (CTA(+)) cations was synthesized by an efficient one-step hydrothermal method and was compared with a CTA-exchanged saponite prepared by a classical postsynthesis intercalation route. In both hybrid samples, surfactant loading up to 10% was achieved. A comparative investigation of the physicochemical properties of both solids was carried out by a multidisciplinary approach, by using a combination of spectroscopic, structural, and thermal characterization tools. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) data indicated that the one-pot-prepared solid showed that the presence of CTA(+) molecules in the synthesis gel did not affect the clay structure. In addition, thermal analysis suggested that the inorganic layers play an active role in stabilizing and protecting the surfactant molecules by increasing their thermal stability. A different arrangement of intercalated CTA(+) ions in the two hybrid clays was observed by solid state NMR in combination with Fourier transform infrared (FTIR) spectroscopy and assigned to a different all-trans/gauche conformation ratio of the surfactant depending on the synthetic method used to prepare the two final materials. The surfactant organization is also influenced by the lamellae charge density, which is different in the two organo-modified materials as found by (27)Al and (29)Si MAS NMR experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA