Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 84(4): 640-658.e10, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266639

RESUMO

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.


Assuntos
Proteínas de Ligação a DNA , Recombinases , Humanos , DNA/genética , Reparo do DNA , Replicação do DNA , DNA Cruciforme , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo
2.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002001

RESUMO

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Assuntos
Replicação do DNA , Mitose , Afidicolina/farmacologia , Proteína BRCA2/genética , Sítios Frágeis do Cromossomo/genética , DNA/genética , Dano ao DNA , Instabilidade Genômica , Humanos , Mitose/genética
3.
Mol Cell ; 74(3): 571-583.e8, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30898438

RESUMO

In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.


Assuntos
Proteínas de Transporte/genética , Instabilidade Cromossômica/genética , Proteínas de Ligação a DNA/genética , Mitose/genética , Proteínas Nucleares/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA/genética , Fase G1/genética , Genoma Humano/genética , Instabilidade Genômica/genética , Histonas , Humanos , Fosforilação , Transdução de Sinais/genética
4.
Mol Cell ; 66(6): 801-817, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622525

RESUMO

In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Núcleo Celular/enzimologia , Dano ao DNA , Reparo do DNA , Animais , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/história , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/história , Reparo do DNA/efeitos dos fármacos , Ativação Enzimática , História do Século XX , História do Século XXI , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Conformação Proteica , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115399

RESUMO

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Assuntos
Síndrome de Bloom/genética , DNA Cruciforme/genética , Instabilidade Genômica/genética , Alelos , Proteínas de Transporte/genética , Linhagem Celular , DNA Topoisomerases Tipo I/genética , Humanos , Mutação/genética , Ligação Proteica/genética , RecQ Helicases/genética , Recombinação Genética/genética , Solubilidade
6.
Trends Biochem Sci ; 45(4): 321-331, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001093

RESUMO

DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to chromosomal instability if they are not repaired correctly. DSBs are especially dangerous in mitosis when cells go through the complex process of equal chromosome segregation into daughter cells. When cells encounter DSBs in interphase, they are able to arrest the cell cycle until the breaks are repaired before entering mitosis. However, when DSBs occur during mitosis, cells no longer arrest but prioritize completion of cell division over repair of DNA damage. This review focuses on recent progress in our understanding of the mechanisms that allow mitotic cells to postpone DSB repair without accumulating massive chromosomal instability. Additionally, we review possible physiological consequences of failed DSB responses in mitosis.


Assuntos
Células/metabolismo , Mitose , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Humanos
7.
Genes Dev ; 30(19): 2152-2157, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798842

RESUMO

PAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf-/- mice, Paxx-/- mice are viable, grow normally, and are fertile but show mild radiosensitivity. Strikingly, while Paxx loss is epistatic with Ku80, Lig4, and Atm deficiency, Paxx/Xlf double-knockout mice display embryonic lethality associated with genomic instability, cell death in the central nervous system, and an almost complete block in lymphogenesis, phenotypes that closely resemble those of Xrcc4-/- and Lig4-/- mice. Thus, combined loss of Paxx and Xlf is synthetic-lethal in mammals.


Assuntos
Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Mutações Sintéticas Letais/genética , Trissacarídeos/genética , Animais , Apoptose/genética , Proteínas de Ligação a DNA/metabolismo , Epistasia Genética , Instabilidade Genômica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Tolerância a Radiação/genética , Trissacarídeos/metabolismo
8.
Mol Cell ; 60(3): 362-73, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26455393

RESUMO

Repair of DNA double-strand breaks is crucial for maintaining genome integrity and is governed by post-translational modifications such as protein ubiquitylation. Here, we establish that the deubiquitylating enzyme USP4 promotes DNA-end resection and DNA repair by homologous recombination. We also report that USP4 interacts with CtIP and the MRE11-RAD50-NBS1 (MRN) complex and is required for CtIP recruitment to DNA damage sites. Furthermore, we show that USP4 is ubiquitylated on multiple sites including those on cysteine residues and that deubiquitylation of these sites requires USP4 catalytic activity and is required for USP4 to interact with CtIP/MRN and to promote CtIP recruitment and DNA repair. Lastly, we establish that regulation of interactor binding by ubiquitylation occurs more generally among USP-family enzymes. Our findings thus identify USP4 as a novel DNA repair regulator and invoke a model in which ubiquitin adducts regulate USP enzyme interactions and functions.


Assuntos
Quebras de DNA de Cadeia Dupla , Modelos Biológicos , Reparo de DNA por Recombinação , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação/fisiologia , Hidrolases Anidrido Ácido , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina
9.
Mol Cell ; 57(6): 1133-1141, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794620

RESUMO

The Bloom syndrome helicase BLM and topoisomerase-IIß-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fosforilação , RecQ Helicases/genética , Serina/metabolismo , Transativadores/genética , Transativadores/metabolismo
10.
Mol Cell ; 59(3): 462-77, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166705

RESUMO

Recognition and repair of damaged replication forks are essential to maintain genome stability and are coordinated by the combined action of the Fanconi anemia and homologous recombination pathways. These pathways are vital to protect stalled replication forks from uncontrolled nucleolytic activity, which otherwise causes irreparable genomic damage. Here, we identify BOD1L as a component of this fork protection pathway, which safeguards genome stability after replication stress. Loss of BOD1L confers exquisite cellular sensitivity to replication stress and uncontrolled resection of damaged replication forks, due to a failure to stabilize RAD51 at these forks. Blocking DNA2-dependent resection, or downregulation of the helicases BLM and FBH1, suppresses both catastrophic fork processing and the accumulation of chromosomal damage in BOD1L-deficient cells. Thus, our work implicates BOD1L as a critical regulator of genome integrity that restrains nucleolytic degradation of damaged replication forks.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Linhagem Celular , Sobrevivência Celular , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Instabilidade Genômica , Células HeLa , Humanos , RecQ Helicases/metabolismo
11.
Mol Cell ; 45(4): 505-16, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22365830

RESUMO

DNA double-strand break (DSB) signaling and repair are critical for cell viability, and rely on highly coordinated pathways whose molecular organization is still incompletely understood. Here, we show that heterogeneous nuclear ribonucleoprotein U-like (hnRNPUL) proteins 1 and 2 play key roles in cellular responses to DSBs. We identify human hnRNPUL1 and -2 as binding partners for the DSB sensor complex MRE11-RAD50-NBS1 (MRN) and demonstrate that hnRNPUL1 and -2 are recruited to DNA damage in an interdependent manner that requires MRN. Moreover, we show that hnRNPUL1 and -2 stimulate DNA-end resection and promote ATR-dependent signaling and DSB repair by homologous recombination, thereby contributing to cell survival upon exposure to DSB-inducing agents. Finally, we establish that hnRNPUL1 and -2 function downstream of MRN and CtBP-interacting protein (CtIP) to promote recruitment of the BLM helicase to DNA breaks. Collectively, these results provide insights into how mammalian cells respond to DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Hidrolases Anidrido Ácido , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Hum Mol Genet ; 21(9): 2005-16, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22279085

RESUMO

FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Reparo do DNA , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
13.
EMBO J ; 29(4): 806-18, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20057355

RESUMO

Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA-ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR-mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Galinhas , Cromatina/metabolismo , DNA Helicases/deficiência , DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fase S , Transdução de Sinais , Estresse Fisiológico , Proteínas Supressoras de Tumor/metabolismo , Quinase 1 Polo-Like
14.
Proc Natl Acad Sci U S A ; 107(27): 12251-6, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566845

RESUMO

Activation of the cellular DNA damage response is detrimental to adenovirus (Ad) infection. Ad has therefore evolved a number of strategies to inhibit ATM- and ATR-dependent signaling pathways during infection. Recent work suggests that the Ad5 E4orf3 protein prevents ATR activation through its ability to mislocalize the MRN complex. Here we provide evidence to indicate that Ad12 has evolved a different strategy from Ad5 to inhibit ATR. We show that Ad12 utilizes a CUL2/RBX1/elongin C-containing ubiquitin ligase to promote the proteasomal degradation of the ATR activator protein topoisomerase-IIbeta-binding protein 1 (TOPBP1). Ad12 also uses this complex to degrade p53 during infection, in contrast to Ad5, which requires a CUL5-based ubiquitin ligase. Although Ad12-mediated degradation of p53 is dependent upon both E1B-55K and E4orf6, Ad12-mediated degradation of TOPBP1 is solely dependent on E4orf6. We propose that Ad12 E4orf6 has two principal activities: to recruit the CUL2-based ubiquitin ligase and to act as substrate receptor for TOPBP1. In support of the idea that Ad12 E4orf6 specifically prevents ATR activation during infection by targeting TOPBP1 for degradation, we demonstrate that Ad12 E4orf6 can inhibit the ATR-dependent phosphorylation of CHK1 in response to replication stress. Taken together, these data provide insights into how Ad modulates ATR signaling pathways during infection.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/fisiologia , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/genética , Elonguina , Imunofluorescência , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Microscopia Confocal , Mutação , Proteínas Nucleares/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética
15.
Nat Rev Cancer ; 23(2): 78-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36471053

RESUMO

Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Reparo do DNA , Dano ao DNA , Mutação , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/uso terapêutico
16.
J Virol ; 85(5): 2201-11, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21159879

RESUMO

Adenovirus type 5 (Ad5) inactivates the host cell DNA damage response by facilitating the degradation of Mre11, DNA ligase IV, and p53. In the case of p53, this is achieved through polyubiquitylation by Ad5E1B55K and Ad5E4orf6, which recruit a Cul5-based E3 ubiquitin ligase. Recent evidence indicates that this paradigm does not apply to other adenovirus serotypes, since Ad12, but not Ad5, causes the degradation of TOPBP1 through the action of E4orf6 alone and a Cul2-based E3 ubiquitin ligase. We now have extended these studies to adenovirus groups A to E. While infection by Ad4, Ad5, and Ad12 (groups E, C, and A, respectively) cause the degradation of Mre11, DNA ligase IV, and p53, infection with Ad3, Ad7, Ad9, and Ad11 (groups B1, B1, D, and B2, respectively) only affects DNA ligase IV levels. Indeed, Ad3, Ad7, and Ad11 cause the marked accumulation of p53. Despite this, MDM2 levels were very low following infection with all of the viruses examined here, regardless of whether they increase p53 expression. In addition, we found that only Ad12 causes the degradation of TOPBP1, and, like Ad5, Ad4 recruits a Cul5-based E3 ubiquitin ligase to degrade p53. Surprisingly, Mre11 and DNA ligase IV degradation do not appear to be significantly affected in Ad4-, Ad5-, or Ad12-infected cells depleted of Cul2 or Cul5, indicating that E1B55K and E4orf6 recruit multiple ubiquitin ligases to target cellular proteins. Finally, although Mre11 is not degraded by Ad3, Ad7, Ad9, and Ad11, no viral DNA concatemers could be detected. We suggest that group B and D adenoviruses have evolved mechanisms based on the loss of DNA ligase IV and perhaps other unknown molecules to disable the host cell DNA damage response to promote viral replication.


Assuntos
Infecções por Adenoviridae/genética , Infecções por Adenoviridae/metabolismo , Adenoviridae/fisiologia , Dano ao DNA , Adenoviridae/classificação , Adenoviridae/genética , Infecções por Adenoviridae/enzimologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade da Espécie , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Nat Commun ; 13(1): 4143, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842428

RESUMO

The accurate repair of DNA double-strand breaks (DSBs), highly toxic DNA lesions, is crucial for genome integrity and is tightly regulated during the cell cycle. In mitosis, cells inactivate DSB repair in favor of a tethering mechanism that stabilizes broken chromosomes until they are repaired in the subsequent cell cycle phases. How this is achieved mechanistically is not yet understood, but the adaptor protein TOPBP1 is critically implicated in this process. Here, we identify CIP2A as a TOPBP1-interacting protein that regulates TOPBP1 localization specifically in mitosis. Cells lacking CIP2A display increased radio-sensitivity, micronuclei formation and chromosomal instability. CIP2A is actively exported from the cell nucleus in interphase but, upon nuclear envelope breakdown at the onset of mitosis, gains access to chromatin where it forms a complex with MDC1 and TOPBP1 to promote TOPBP1 recruitment to sites of mitotic DSBs. Collectively, our data uncover CIP2A-TOPBP1 as a mitosis-specific genome maintenance complex.


Assuntos
Autoantígenos , Proteínas de Transporte , Reparo do DNA , Proteínas de Ligação a DNA , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Proteínas Nucleares , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitose/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
18.
Nat Commun ; 12(1): 585, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500419

RESUMO

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.


Assuntos
Síndrome de Bloom/genética , Replicação do DNA , DNA de Cadeia Simples/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo , Motivos de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitose/genética , Mutação , Ligação Proteica/genética , Domínios Proteicos/genética , RecQ Helicases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação/genética
19.
J Biol Chem ; 284(49): 33939-48, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19826003

RESUMO

Human mediator of DNA damage checkpoint 1 (hMDC1) is an essential component of the cellular response to DNA double strand breaks. Recently, hMDC1 has been shown to associate with a subunit of the anaphase-promoting complex/cyclosome (APC/C) (Coster, G., Hayouka, Z., Argaman, L., Strauss, C., Friedler, A., Brandeis, M., and Goldberg, M. (2007) J. Biol. Chem. 282, 32053-32064), a key regulator of mitosis, suggesting a possible role for hMDC1 in controlling normal cell cycle progression. Here, we extend this work to show that hMDC1 regulates normal metaphase-to-anaphase transition through its ability to bind directly to the APC/C and modulate its E3 ubiquitin ligase activity. In support of a role for hMDC1 in controlling mitotic progression, depletion of hMDC1 by small interfering RNA results in a metaphase arrest that appears to be independent of both BubR1-dependent signaling pathways and ATM/ATR activation. Mitotic cells lacking hMDC1 exhibit markedly reduced levels of APC/C activity characterized by reduced levels of Cdc20, and a failure of Cdc20 to bind the APC/C and CREB-binding protein. We suggest therefore that hMDC1 functionally regulates the normal metaphase-to-anaphase transition by modulating the Cdc20-dependent activation of the APC/C.


Assuntos
Mitose , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Anáfase , Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Immunoblotting/métodos , Metáfase , Microscopia de Fluorescência/métodos , Modelos Biológicos , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Complexos Ubiquitina-Proteína Ligase/química , Ubiquitina-Proteína Ligases/química
20.
Nat Commun ; 11(1): 123, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913317

RESUMO

Induction of DNA double-strand breaks (DSBs) in ribosomal DNA (rDNA) repeats is associated with ATM-dependent repression of ribosomal RNA synthesis and large-scale reorganization of nucleolar architecture, but the signaling events that regulate these responses are largely elusive. Here we show that the nucleolar response to rDNA breaks is dependent on both ATM and ATR activity. We further demonstrate that ATM- and NBS1-dependent recruitment of TOPBP1 in the nucleoli is required for inhibition of ribosomal RNA synthesis and nucleolar segregation in response to rDNA breaks. Mechanistically, TOPBP1 recruitment is mediated by phosphorylation-dependent interactions between three of its BRCT domains and conserved phosphorylated Ser/Thr residues at the C-terminus of the nucleolar phosphoprotein Treacle. Our data thus reveal an important cooperation between TOPBP1 and Treacle in the signaling cascade that triggers transcriptional inhibition and nucleolar segregation in response to rDNA breaks.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Nucléolo Celular/genética , DNA Ribossômico/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Motivos de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA