RESUMO
Titanium dioxide was synthesized via hydrolysis of titanium (IV) isopropoxide using a sol-gel method, under neutral or basic conditions, and heated in the microwave-assisted solvothermal reactor and/or high-temperature furnace. The phase composition of the prepared samples was determined using the X-ray diffraction method. The specific surface area and pore volumes were determined through low-temperature nitrogen adsorption/desorption studies. The photoactivity of the samples was tested through photocatalytic reduction of carbon dioxide. The composition of the gas phase was analyzed using gas chromatography, and hydrogen, carbon oxide, and methane were identified. The influence of pH and heat treatment on the physicochemical properties of titania-based materials during photoreduction of carbon dioxide have been studied. It was found that the photocatalysts prepared in neutral environment were shown to result in a higher content of hydrogen, carbon monoxide, and methane in the gas phase compared to photocatalysts obtained under basic conditions. The highest amounts of hydrogen were detected in the processes using photocatalysts heated in the microwave reactor, and double-heated photocatalysts.
RESUMO
Metal-Organic Frameworks (MOFs), thanks to their type V water adsorption isotherms ("S-Shape") and large water capacities, are considered as potential breakthrough adsorbents for heat-pump applications. In particular, Al(OH)-fumarate could enable efficient regeneration at a lower temperature than silica-gel which would allow us to address the conversion of waste heat at low temperature such as found in data centers. Despite its greater adsorption capacity features, heat and mass transport limitations could jeopardize the potential performance of Al(OH)-fumarate. Heat and mass transport depend on the size of the bodies (mm range), their packing and on the pore structures, i.e. macro-mesopore volumes and sizes. This paper describes the cost-efficient and scalable synthesis and shaping processes of Al(OH)-fumarate beads of various sizes appropriate for use in water Adsorption Heat-Pumps (AHPs). The objective was to study transport limitations (i.e. mass and heat) in practical e beads which meet mechanical stability requirements. Dynamic data at the grain scale was obtained by the Large Temperature Jump method while dynamic data at the adsorber scale was obtained on a heat exchanger filled with more than 1 kg of Al(OH)-fumarate beads. Whereas the binder content had little impact on mass and heat transfer in this study, we found that Knudsen diffusion in mesopores of the grain may be the main limiting factor at the grain scale. At the adsorber scale, heat-transfer within the bed packing as well as to the heat exchanger is likely responsible for the slow adsorption and desorption kinetics which have been observed for very low desorption temperature. Finally, the dynamic aspects of the observed water adsorption isotherm shift with temperature are discussed in light of reported reversible structure modification upon temperature triggered water adsorption-desorption.
RESUMO
BACKGROUND: Respirable stone- and mineral particles may be a major constituent in occupational and ambient air pollution and represent a possible health hazard. However, with exception of quartz and asbestos, little is known about the toxic properties of mineral particles. In the present study, the pro-inflammatory and cytotoxic responses to six stone particle samples of different composition and with diameter below 10 µm were assessed in human bronchial epithelial cells (HBEC3-KT), THP-1 macrophages and a HBEC3-KT/THP-1 co-culture. Moreover, particle-induced lysis of human erythrocytes was assessed to determine the ability of the particles to lyse biological membranes. Finally, the role of the NLRP3 inflammasome was assessed using a NLRP3-specific inhibitor and detection of ASC oligomers and cleaved caspase-1 and IL-1ß. A reference sample of pure α-quartz was included for comparison. RESULTS: Several stone particle samples induced a concentration-dependent increase in cytotoxicity and secretion of the pro-inflammatory cytokines CXCL8, IL-1α, IL-1ß and TNFα. In HBEC3-KT, quartzite and anorthosite were the most cytotoxic stone particle samples and induced the highest levels of cytokines. Quartzite and anorthosite were also the most cytotoxic samples in THP-1 macrophages, while anorthosite and hornfels induced the highest cytokine responses. In comparison, few significant differences between particle samples were detected in the co-culture. Adjusting responses for differences in surface area concentrations did not fully account for the differences between particle samples. Moreover, the stone particles had low hemolytic potential, indicating that the effects were not driven by membrane lysis. Pre-incubation with a NLRP3-specific inhibitor reduced stone particle-induced cytokine responses in THP-1 macrophages, but not in HBEC3-KT cells, suggesting that the effects are mediated through different mechanisms in epithelial cells and macrophages. Particle exposure also induced an increase in ASC oligomers and cleaved caspase-1 and IL-1ß in THP-1 macrophages, confirming the involvement of the NLRP3 inflammasome. CONCLUSIONS: The present study indicates that stone particles induce cytotoxicity and pro-inflammatory responses in human bronchial epithelial cells and macrophages, acting through NLRP3-independent and -dependent mechanisms, respectively. Moreover, some particle samples induced cytotoxicity and cytokine release to a similar or greater extent than α-quartz. Thus, these minerals warrant further attention in future research.
Assuntos
Inflamassomos , Macrófagos , Material Particulado/toxicidade , Caspase 1 , Citocinas , Humanos , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quartzo/toxicidadeRESUMO
Four isostructural CPO-54-M metal-organic frameworks based on the larger organic linker 1,5-dihydroxynaphthalene-2,6-dicarboxylic acid and divalent cations (M=Mn, Mg, Ni, Co) are shown to be isoreticular to the CPO-27 (MOF-74) materials. Desolvated CPO-54-Mn contains a very high concentration of open metal sites, which has a pronounced effect on the gas adsorption of N2 , H2 , CO2 and CO. Initial isosteric heats of adsorption are significantly higher than for MOFs without open metal sites and are slightly higher than for CPO-27. The plateau of high heat of adsorption decreases earlier in CPO-54-Mn as a function of loading per mole than in CPO-27-Mn. Cluster and periodic density functional theory based calculations of the adsorbate structures and energetics show that the larger adsorption energy at low loadings, when only open metal sites are occupied, is mainly due to larger contribution of dispersive interactions for the materials with the larger, more electron rich bridging ligand.
RESUMO
The structure and properties of two new UiO-67-type metal-organic frameworks, along with their linker synthesis and powder and single crystal synthesis, are presented. The new MOFs, UiO-67-Me and UiO-67-BN, are based on 3,3'-dimethylbiphenyl and 1,1'-binaphthyl linker scaffolds, and show a much higher stability to water than the thoroughly investigated UiO-67, which is based on the biphenyl scaffold. On the basis of structure models obtained from single crystal X-ray diffraction, it is seen that these linkers are partly shielding the Zr cluster. The new materials have higher density than UiO-67, but show a higher volumetric adsorption capacity for methane. UiO-67-BN exhibits excellent reversible water sorption properties, and enhanced stability to aqueous solutions over a wide pH range; it is to the best of our knowledge the most stable Zr-MOF that is isostructural to UiO-67 in aqueous solutions.
RESUMO
A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95â wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5â mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9â g cm(-3) and particle crushing strengths above 20â N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes.
RESUMO
A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.
Assuntos
Óxido de Alumínio/química , Dióxido de Carbono/síntese química , Cobre/química , Metano/química , Técnicas de Química Sintética/instrumentação , Desenho de Equipamento , Gases/químicaRESUMO
The microporous metal-organic framework Ni(2)(dhtp) (H(4)dhtp=2,5-dihydroxyterephthalic acid) shows distinct end-on CO(2) coordination to coordinatively unsaturated nickel sites giving rise to high CO(2) adsorption capacity at sub-atmospheric pressures and ambient temperatures.
RESUMO
Ethene polymerization with bis(2-dimethylsilyl-indenyl)zirconium(IV) dichloride (1)/MAO and bis(2-trimethylsilyl-indenyl)zirconium(IV) dichloride (2)/MAO and ethene-co-1-hexene polymerization with 1/MAO are presented. The end group analysis of homopolymers reveals a pronounced dependence of the termination rate on temperature changes. In combination with the high molecular weights obtained, these results are in accord with theoretical predictions. Gel permeation chromatography, Fourier transform infrared, and 13C NMR analyses of copolymerization products from 1/MAO as a function of comonomer concentration at two different temperature series denote its tendency to form inhomogeneous polymer blends. Thermal analysis and fractionation results of one such blend indicate an inhomogeneity in the enchainment process and the existence of multiple active sites of differing geometry. These indications are further supported by AMBER force field and density functional theory studies of the catalyst precursors and the active site of 1/MAO. For this system, delta-agostic interactions for the stabilization of the zirconium cation are favored over beta-agostic interactions, which, in contrast to the situation in studies on bis-Cp systems, is a sparsely populated species. The gap in activation enthalphies for beta-hydride transfer and elimination is marginalized for these bulky zirconocenes, and conceptually new mechanisms for the isomerization of the vinyl end groups are discussed. Further, unexpected activation of the silicon-hydrogen bond within the ligand framework is observed with an activation enthalpy as low as 14 kcal/mol.
RESUMO
Water is the strongest competitor to CO2 in the adsorption on microporous materials, affecting their performances as CO2 scrubbers in processes such as postcombustion carbon capture. The metal-organic framework (MOF) UTSA-16 is considered a promising material for its capacity to efficiently capture CO2 in large quantities, thanks to the presence of open metal sites (OMSs). It is here shown that UTSA-16 is also able to desorb fully water already at room temperature. This property is unique from all the other materials with OMSs reported so far. UTSA-16 retains indeed the 70% of its CO2 separation capacity after admittance of water in a test flow, created to simulate the emissions from a real postcombustion carbon-capture process. This important aspect not yet observed for any other amine-free material, associated with a high material stability-tested for 160 cycles-and a small temperature swing necessary for regeneration, places UTSA-16 in the restrict number of systems with a real technological future for CO2 separation.
RESUMO
The solvent contained within the cylindrical one-dimensional pores of the novel three-dimensional metal organic framework Ni2(dhtp)(H2O)2.8H2O can be removed without decomposition of the network, allowing gas storage within the cavities.
RESUMO
Hydrogen molecules adsorbed in the nickel, cobalt, and magnesium analogs of the CPO-27 metal-organic framework at low loadings interact significantly more strongly than those adsorbed successively as a consequence of the strong interaction of hydrogen with the coordinatively unsaturated metal cations in the framework.
RESUMO
Porous metal-organic framework compounds with coordinatively unsaturated metal sites on the inner surface of the pores promise to be valuable adsorbents and catalyst systems, either in industrial applications or as model systems to study interactions with guest molecules. The dehydration process of two isostructural microporous coordination polymers, [M2(dhtp)(H2O)2].8 H2O, termed CPO-27-M (M=Co, Zn; H(4)dhtp=2,5-dihydroxyterephthalic acid) was investigated by in situ variable temperature X-ray diffraction. Both compounds contain accessible coordination sites at the metal after complete removal of the solvent. However, despite the analogy of their crystal structures, they behave differently during dehydration. For CPO-27-Co, water desorption is a smooth topotactic process of second order with no concomitant space group change and no increase in microstrain, which is beneficial for the applicability of the material. Removal of the water propagates from the center of the channels outwards. The coordinating water molecule at the metal desorbs only when almost all the bulk water in the pores has disappeared. In contrast, discontinuities in the powder pattern of CPO-27-Zn indicate the occurrence of first-order transitions. The crystal structures of four of the five individual phases could be determined. The structure of the intermediate phase occurring just before the framework is completely evacuated was elusive in respect to full structure solution and refinement, but it is most probably related to the removal of the axis of threefold symmetry. The zinc-based material experiences a significant amount of strain.
RESUMO
DFT and high-level ab initio calculations (among them B3LYP and G3MP2B3) have been used to describe molecular reactions relevant for CO2 absorption in aqueous (alkanol)amine solutions. Reaction mechanisms for various reactions of CO2 with ammonia, monoethanolamine (MEA), and diethanolamine (DEA) to carbamic acid and ion pair products have been investigated and interpreted in light of experimental observations. Additional water, ammonia, MEA, and DEA molecules have also been added to the molecular complexes to simulate microsolvation effects. These extra molecules may act as catalysts for the desired reactions, and in several cases they have a large impact on activation and reaction energies. Solvent effects were estimated by applying electrostatic continuum models for selected systems. Our calculated transition state energies agree well with experimental activation energies.
RESUMO
Scandium chloride and nitrate react with 2,5-dihydroxyterephthalic acid to form three-dimensional framework compounds in which hexagonally-closed packed inorganic building blocks are linked by the carboxylate groups of the organic ligand. The inorganic moieties consist of three scandium oxygen octahedra that are joined by a common mu3-oxygen atom; the pores in the structure account for 60% of the volume, but the framework decomposes upon removal of the solvent molecules.
RESUMO
Three coordination polymers containing zinc and diphenic acid (H2dpa) were synthesised by solvothermal reaction. Zn(dpa)(H2O) is a one-dimensional coordination polymer that consists of parallel ladder-like chains. One carboxylate group of the diphenic acid coordinates two zinc atoms forming a dinuclear unit which composes the steps of the ladder. The other carboxylate connects to a zinc atom in the next step of the ladder. The fourth coordination site at the zinc atom is occupied by water. Attempts to crosslink the chains by replacing the water molecule with the neutral ligands triethylenediamine (dabco) or 4,4'-bipyridyl lead to the compounds Zn2(dpa)2(dabco) and Zn(dpa)(4,4'-bpy). Their structures can be rationalised as being derived from action of the neutral ligand on Zn(dpa)(H2O), and while they are most conveniently prepared in a one-pot synthesis, it is also possible to obtain them by exposing Zn(dpa)(H2O) to the respective neutral ligand. Zn2(dpa)2(dabco) is a layered two-dimensional coordination polymer in which dinculear zinc carboxylate paddle wheel units and the dabco ligand form infinite linear chains. The chains are interconnected by the dpa unit. The structure of Zn(dpa)(4,4'-bpy) consists of two identical interpenetrating three-dimensional networks. In the network, helical Zn(dpa) chains are interconnected by the rigid 4,4'-bipyridine ligand. Thermogravimetric analysis indicates a high thermal stability of this coordination polymer with decomposition occurring in the range 350-450 degrees C. This is complemented by X-ray thermodiffractometry that indicates a phase transition at 337 degrees C and the final loss of crystallinity at 427 degrees C. The room temperature phase expands drastically along one axis and contracts along the other two axes on heating.
RESUMO
Among the 2-substituted indenes, 2-trifluoroindene and 2-tert-butylindene are poorly or incompletely described in the open literature. We herein describe an efficient one-pot synthesis of these compounds as a variation of the Perkin reaction which allows us to refute an earlier claim that bis(2-tert-butylindenyl)zirconium(IV) dichloride (2a) will not polymerise ethene. In fact, 2a/MAO polymerises ethene to extremely high molecular weights. Extensive DFT calculations on the polymerisation mechanism revealed an unprecedented suppression of the otherwise predominant chain termination by beta-hydride transfer due to steric congestion of the active site.
RESUMO
We report the use of gas sorption experiments and in situ powder X-ray diffraction to study the use of dolomite (MgCa(CO3)2) as a potential reversible high-temperature CO2 sorbent. When dolomite is treated in inert atmosphere at 900 degrees C it decomposes into separate CaO and MgO rich phases and dolomite is never reformed pon CO2 sorption. Gas sorption studies show that the calcined dolomite can go through several cycles of CO2 sorption/desorption in a reversible manner, however, the sorption capacity diminishes with each cycle. Only calcium seems to be involved in the CO2 sorption, while MgO acts as a carrier for the calcium phase. Some evidence of magnesium contamination of the calcium phase was found. BET and SEM measurements were carried out to find differences in the surface area/particle morphology that may explain similarities in the sorption capacities of dolomite and calcite (CaCO3).
Assuntos
Carbonato de Cálcio/química , Dióxido de Carbono/química , Magnésio/química , Adsorção , Cálcio/química , Microscopia Eletrônica de Varredura/métodos , Pós , Pressão , Propriedades de Superfície , Temperatura , Difração de Raios XRESUMO
The systematic syntheses of 1- and 2-substituted silylindenes, with a wide variety of substitution patterns on the silyl moiety, and their corresponding zirconocene dichlorides are presented. The rac- and meso-diastereomers of the 1-substituted zirconocene dichlorides can in most cases be separated. Instable zirconocenes were observed for certain substitution patterns. Two of the obtained zirconocene dichlorides, bis[2-(dimethylsilyl)indenyl]zirconium dichloride (4a) and bis[2-(trimethylsilyl)indenyl]zirconium dichloride (4b), were characterised by single crystal X-ray diffraction. On the basis of DFT results, the two compounds are geometrically similar, i.e. the additional methyl group on the silyl moiety only affects the conformational energy profile. Differences in their catalyst performance in the homopolymerisation studies with ethane are thus attributed to conformational control. For the remaining complexes, sterically less demanding silyl groups seem to be favoured with respect to the catalyst performance. All the 2-isomers have lower polymerisation activities than the unsubstituted bis[indenyl]zirconium dichloride/MAO system. Curiously, the rac-bis[1-(dimethylphenylsilyl)indenyl]zirconium dichloride/MAO system is found to be the most active catalyst in ethene homopolymerisations.