Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35898009

RESUMO

In this paper, the combination of using an anti-resonant hollow-core fiber (ARHCF), working as a gas absorption cell, and an inexpensive, commercially available watch quartz tuning fork (QTF), acting as a detector in the quartz-enhanced photothermal spectroscopy (QEPTS) sensor configuration is demonstrated. The proof-of-concept experiment involved the detection of methane (CH4) at 1651 nm (6057 cm-1). The advantage of the high QTF Q-factor combined with a specially designed low-noise amplifier and additional wavelength modulation spectroscopy with the second harmonic (2f-WMS) method of signal analysis, resulted in achieving a normalized noise-equivalent absorption (NNEA) at the level of 1.34 × 10-10 and 2.04 × 10-11 W cm-1 Hz-1/2 for 1 and 100 s of integration time, respectively. Results obtained in that relatively non-complex sensor setup show great potential for further development of cost-optimized and miniaturized gas detectors, taking advantage of the combination of ARHCF-based absorption cells and QTF-aided spectroscopic signal retrieval methods.


Assuntos
Metano , Quartzo , Amplificadores Eletrônicos , Estudo de Prova de Conceito , Análise Espectral/métodos
2.
Sensors (Basel) ; 20(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650459

RESUMO

In this work, we present for the first time a laser-based dual gas sensor utilizing a silica-based Antiresonant Hollow-Core Fiber (ARHCF) operating in the Near- and Mid-Infrared spectral region. A 1-m-long fiber with an 84-µm diameter air-core was implemented as a low-volume absorption cell in a sensor configuration utilizing the simple and well-known Wavelength Modulation Spectroscopy (WMS) method. The fiber was filled with a mixture of methane (CH4) and carbon dioxide (CO2), and a simultaneous detection of both gases was demonstrated targeting their transitions at 3.334 µm and 1.574 µm, respectively. Due to excellent guidance properties of the fiber and low background noise, the proposed sensor reached a detection limit down to 24 parts-per-billion by volume for CH4 and 144 parts-per-million by volume for CO2. The obtained results confirm the suitability of ARHCF for efficient use in gas sensing applications for over a broad spectral range. Thanks to the demonstrated low loss, such fibers with lengths of over one meter can be used for increasing the laser-gas molecules interaction path, substituting bulk optics-based multipass cells, while delivering required flexibility, compactness, reliability and enhancement in the sensor's sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA