Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Annu Rev Immunol ; 33: 355-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25594431

RESUMO

The TAM receptor tyrosine kinases (RTKs)-TYRO3, AXL, and MERTK-together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease.


Assuntos
Homeostase , Imunidade/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Suscetibilidade a Doenças , Humanos , Ligantes , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética
2.
Eur J Immunol ; 54(2): e2350434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971166

RESUMO

The initiation of tissue remodeling following damage is a critical step in preventing the development of immune-mediated diseases. Several factors contribute to mucosal healing, leading to innovative therapeutic approaches for managing intestinal disorders. However, uncovering alternative targets and gaining mechanistic insights are imperative to enhance therapy efficacy and broaden its applicability across different intestinal diseases. Here we demonstrate that Nmes1, encoding for Normal Mucosa of Esophagus-Specific gene 1, also known as Aa467197, is a novel regulator of mucosal healing. Nmes1 influences the macrophage response to the tissue remodeling cytokine IL-4 in vitro. In addition, using two murine models of intestinal damage, each characterized by a type 2-dominated environment with contrasting functions, the ablation of Nmes1 results in decreased intestinal regeneration during the recovery phase of colitis, while enhancing parasitic egg clearance and reducing fibrosis during the advanced stages of Schistosoma mansoni infection. These outcomes are associated with alterations in CX3CR1+ macrophages, cells known for their wound-healing potential in the inflamed colon, hence promising candidates for cell therapies. All in all, our data indicate Nmes1 as a novel contributor to mucosal healing, setting the basis for further investigation into its potential as a new target for the treatment of colon-associated inflammation.


Assuntos
Colite , Mucosa Intestinal , Animais , Camundongos , Colite/tratamento farmacológico , Citocinas , Intestinos , Cicatrização
3.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160941

RESUMO

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Interleucina-10 , Neoplasias Hepáticas/patologia , Receptores de Interleucina-10 , Microambiente Tumoral
4.
Semin Cell Dev Biol ; 119: 72-81, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246569

RESUMO

Functional heterogeneity in tissue macrophage populations has often been traced to developmental and spatial cues. Upon tissue damage, macrophages are exposed to soluble mediators secreted by activated cells, which shape their polarisation. Interestingly, macrophages are concomitantly exposed to a variety of different dying cells, which carry miscellaneous signals and that need to be recognised and promptly up-taken by professional phagocytes. This review discusses how differences in the nature of the dying cells, like their morphological and biochemical features as well as the specificity of phagocytic receptor usage on macrophages, might contribute to the transcriptional and functional heterogeneity observed in phagocytic cells in the tissue.


Assuntos
Apoptose/fisiologia , Fígado/fisiologia , Macrófagos/fisiologia , Heterogeneidade Genética , Humanos , Transdução de Sinais
5.
J Med Virol ; 95(1): e28364, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458566

RESUMO

Post-acute sequelae of COVID-19 (PASC) are long-term consequences of SARS-CoV-2 infection that can substantially impair the quality of life. Underlying mechanisms ranging from persistent viruses to innate and adaptive immune dysregulation have been discussed. Here, we profiled the plasma of 181 individuals from the cohort study for digital health research in Germany (DigiHero), including individuals after mild to moderate COVID-19 with or without PASC and uninfected controls. We focused on soluble factors related to monocyte/macrophage biology and on circulating SARS-CoV-2 spike (S1) protein as a potential biomarker for persistent viral reservoirs. At a median time of 8 months after infection, we found pronounced dysregulation in almost all tested soluble factors, including both pro-inflammatory and pro-fibrotic cytokines. These immunological perturbations were remarkably independent of ongoing PASC symptoms per se, but further correlation and regression analyses suggested PASC-specific patterns involving CCL2/MCP-1 and IL-8 that either correlated with sCD162, sCD206/MMR, IFN-α2, IL-17A and IL-33, or IL-18 and IL-23. None of the analyzed factors correlated with the detectability or levels of circulating S1, indicating that this represents an independent subset of patients with PASC. These data confirm prior evidence of immune dysregulation and persistence of viral protein in PASC and illustrate its biological heterogeneity that still awaits correlation with clinically defined PASC subtypes.


Assuntos
Síndrome de COVID-19 Pós-Aguda , Glicoproteína da Espícula de Coronavírus , Humanos , Biomarcadores , Estudos de Coortes , COVID-19/complicações , Progressão da Doença , Síndrome de COVID-19 Pós-Aguda/diagnóstico , Síndrome de COVID-19 Pós-Aguda/metabolismo , Qualidade de Vida , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/química , Macrófagos/metabolismo
6.
Immunity ; 39(1): 160-70, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23850380

RESUMO

Dendritic cell (DC) activation is essential for the induction of immune defense against pathogens, yet needs to be tightly controlled to avoid chronic inflammation and exaggerated immune responses. Here, we identify a mechanism of immune homeostasis by which adaptive immunity, once triggered, tempers DC activation and prevents overreactive immune responses. T cells, once activated, produced Protein S (Pros1) that signaled through TAM receptor tyrosine kinases in DCs to limit the magnitude of DC activation. Genetic ablation of Pros1 in mouse T cells led to increased expression of costimulatory molecules and cytokines in DCs and enhanced immune responses to T cell-dependent antigens, as well as increased colitis. Additionally, PROS1 was expressed in activated human T cells, and its ability to regulate DC activation was conserved. Our results identify a heretofore unrecognized, homeostatic negative feedback mechanism at the interface of adaptive and innate immunity that maintains the physiological magnitude of the immune response.


Assuntos
Imunidade Adaptativa/imunologia , Células Dendríticas/imunologia , Proteína S/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Colite/genética , Colite/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Immunoblotting , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína S/genética , Proteína S/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo
7.
Immunity ; 36(3): 415-26, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22386268

RESUMO

Neutralizing antibodies have been thought to be required for protection against acutely cytopathic viruses, such as the neurotropic vesicular stomatitis virus (VSV). Utilizing mice that possess B cells but lack antibodies, we show here that survival upon subcutaneous (s.c.) VSV challenge was independent of neutralizing antibody production or cell-mediated adaptive immunity. However, B cells were absolutely required to provide lymphotoxin (LT) α1ß2, which maintained a protective subcapsular sinus (SCS) macrophage phenotype within virus draining lymph nodes (LNs). Macrophages within the SCS of B cell-deficient LNs, or of mice that lack LTα1ß2 selectively in B cells, displayed an aberrant phenotype, failed to replicate VSV, and therefore did not produce type I interferons, which were required to prevent fatal VSV invasion of intranodal nerves. Thus, although B cells are essential for survival during VSV infection, their contribution involves the provision of innate differentiation and maintenance signals to macrophages, rather than adaptive immune mechanisms.


Assuntos
Linfócitos B/imunologia , Macrófagos/imunologia , Estomatite Vesicular/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Imunidade Inata , Interferon Tipo I/biossíntese , Linfonodos/imunologia , Heterotrímero de Linfotoxina alfa1 e beta2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Vesiculovirus/imunologia , Vesiculovirus/patogenicidade
8.
Immunol Rev ; 280(1): 8-25, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29027219

RESUMO

Cell death is a perpetual feature of tissue microenvironments; each day under homeostatic conditions, billions of cells die and must be swiftly cleared by phagocytes. However, cell death is not limited to this natural turnover-apoptotic cell death can be induced by infection, inflammation, or severe tissue injury. Phagocytosis of apoptotic cells is thus coupled to specific functions, from the induction of growth factors that can stimulate the replacement of dead cells to the promotion of tissue repair or tissue remodeling in the affected site. In this review, we outline the mechanisms by which phagocytes sense apoptotic cell death and discuss how phagocytosis is integrated with environmental cues to drive appropriate responses.


Assuntos
Morte Celular , Infecções/imunologia , Inflamação/imunologia , Fagócitos/fisiologia , Fagocitose , Animais , Microambiente Celular , Homeostase , Humanos , Cicatrização
9.
Nature ; 491(7423): 259-63, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23075849

RESUMO

Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. This association could be explained by the hypothesis that the same factors and pathways important for wound healing also promote tumorigenesis. A sensor of tissue damage should induce these factors to promote tissue repair and regulate their action to prevent development of cancer. Interleukin 22 (IL-22), a cytokine of the IL-10 superfamily, has an important role in colonic epithelial cell repair, and its levels are increased in the blood and intestine of inflammatory bowel disease patients. This cytokine can be neutralized by the soluble IL-22 receptor, known as the IL-22 binding protein (IL-22BP, also known as IL22RA2); however, the significance of endogenous IL-22BP in vivo and the pathways that regulate this receptor are unknown. Here we describe that IL-22BP has a crucial role in controlling tumorigenesis and epithelial cell proliferation in the colon. IL-22BP is highly expressed by dendritic cells in the colon in steady-state conditions. Sensing of intestinal tissue damage via the NLRP3 or NLRP6 inflammasomes led to an IL-18-dependent downregulation of IL-22BP, thereby increasing the ratio of IL-22/IL-22BP. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumour development if uncontrolled during the recovery phase. Thus, the IL-22-IL-22BP axis critically regulates intestinal tissue repair and tumorigenesis in the colon.


Assuntos
Transformação Celular Neoplásica , Inflamassomos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Receptores de Interleucina/metabolismo , Animais , Colite/complicações , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/complicações , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genes APC , Interleucina-18/metabolismo , Interleucinas/deficiência , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Camundongos Knockout , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Fatores de Tempo , Redução de Peso , Interleucina 22
10.
Nature ; 465(7301): 1079-83, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20577213

RESUMO

Lymph nodes (LNs) capture microorganisms that breach the body's external barriers and enter draining lymphatics, limiting the systemic spread of pathogens. Recent work has shown that CD11b(+)CD169(+) macrophages, which populate the subcapsular sinus (SCS) of LNs, are critical for the clearance of viruses from the lymph and for initiating antiviral humoral immune responses. Here we show, using vesicular stomatitis virus (VSV), a relative of rabies virus transmitted by insect bites, that SCS macrophages perform a third vital function: they prevent lymph-borne neurotropic viruses from infecting the central nervous system (CNS). On local depletion of LN macrophages, about 60% of mice developed ascending paralysis and died 7-10 days after subcutaneous infection with a small dose of VSV, whereas macrophage-sufficient animals remained asymptomatic and cleared the virus. VSV gained access to the nervous system through peripheral nerves in macrophage-depleted LNs. In contrast, within macrophage-sufficient LNs VSV replicated preferentially in SCS macrophages but not in adjacent nerves. Removal of SCS macrophages did not compromise adaptive immune responses against VSV, but decreased type I interferon (IFN-I) production within infected LNs. VSV-infected macrophages recruited IFN-I-producing plasmacytoid dendritic cells to the SCS and in addition were a major source of IFN-I themselves. Experiments in bone marrow chimaeric mice revealed that IFN-I must act on both haematopoietic and stromal compartments, including the intranodal nerves, to prevent lethal infection with VSV. These results identify SCS macrophages as crucial gatekeepers to the CNS that prevent fatal viral invasion of the nervous system on peripheral infection.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Linfonodos/imunologia , Linfonodos/virologia , Macrófagos/imunologia , Infecções por Rhabdoviridae/imunologia , Vesiculovirus/imunologia , Animais , Sistema Nervoso Central/citologia , Células Dendríticas/imunologia , Injeções , Interferon Tipo I/imunologia , Linfonodos/citologia , Linfonodos/inervação , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Paralisia/complicações , Paralisia/virologia , Nervos Periféricos/virologia , Receptor de Interferon alfa e beta/deficiência , Infecções por Rhabdoviridae/complicações , Infecções por Rhabdoviridae/virologia , Taxa de Sobrevida , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular Indiana/patogenicidade , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular New Jersey/imunologia , Vírus da Estomatite Vesicular New Jersey/patogenicidade , Vírus da Estomatite Vesicular New Jersey/fisiologia , Vesiculovirus/patogenicidade , Vesiculovirus/fisiologia
11.
Proc Natl Acad Sci U S A ; 110(32): 13091-6, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878224

RESUMO

The receptor tyrosine kinases Axl and Mer, belonging to the Tyro3, Axl and Mer (TAM) receptor family, are expressed in a number of tumor cells and have well-characterized oncogenic roles. The therapeutic targeting of these kinases is considered an anticancer strategy, and various inhibitors are currently under development. At the same time, Axl and Mer are expressed in dendritic cells and macrophages and have an essential function in limiting inflammation. Inflammation is an enabling characteristic of multiple cancer hallmarks. These contrasting oncogenic and anti-inflammatory functions of Axl and Mer posit a potential paradox in terms of anticancer therapy. Here we demonstrate that azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced inflammation-associated cancer is exacerbated in mice lacking Axl and Mer. Ablation of Axl and Mer signaling is associated with increased production of proinflammatory cytokines and failure to clear apoptotic neutrophils in the intestinal lamina propria, thereby favoring a tumor-promoting environment. Interestingly, loss of these genes in the hematopoietic compartment is not associated with increased colitis. Axl and Mer are expressed in radioresistant intestinal macrophages, and the loss of these genes is associated with an increased inflammatory signature in this compartment. Our results raise the possibility of potential adverse effects of systemic anticancer therapies with Axl and Mer inhibitors, and underscore the importance of understanding their tissue and cell type-specific functions in cancer.


Assuntos
Colite/imunologia , Neoplasias do Colo/imunologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Azoximetano , Colite/induzido quimicamente , Colite/genética , Colo/imunologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Citocinas/genética , Citocinas/imunologia , Sulfato de Dextrana , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
12.
J Immunol ; 188(12): 6267-77, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22573810

RESUMO

The aim of this study was to verify whether macrophages influence the fate of transplanted mesoangioblasts--vessel-associated myogenic precursors--in a model of sterile toxin-induced skeletal muscle injury. We have observed that in the absence of macrophages, transplanted mesoangioblasts do not yield novel fibers. Macrophages retrieved from skeletal muscles at various times after injury display features that resemble those of immunoregulatory macrophages. Indeed, they secrete IL-10 and express CD206 and CD163 membrane receptors and high amounts of arginase I. We have reconstituted the muscle-associated macrophage population by injecting polarized macrophages before mesoangioblast injection: alternatively activated, immunoregulatory macrophages only support mesoangioblast survival and function. This action depends on the secretion of IL-10 in the tissue. Our results reveal an unanticipated role for tissue macrophages in mesoangioblast function. Consequently, the treatment of muscle disorders with mesoangioblasts should take into consideration coexisting inflammatory pathways, whose activation may prove crucial for its success.


Assuntos
Interleucina-10/metabolismo , Macrófagos/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/lesões , Pericitos/citologia , Células-Tronco/citologia , Animais , Western Blotting , Diferenciação Celular , Separação Celular , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Interleucina-10/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Pericitos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante de Células-Tronco , Células-Tronco/metabolismo
13.
NPJ Vaccines ; 9(1): 23, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316833

RESUMO

The rapid development of safe and effective vaccines helped to prevent severe disease courses after SARS-CoV-2 infection and to mitigate the progression of the COVID-19 pandemic. While there is evidence that vaccination may reduce the risk of developing post-COVID-19 conditions (PCC), this effect may depend on the viral variant. Therapeutic effects of post-infection vaccination have been discussed but the data for individuals with PCC remains inconclusive. In addition, extremely rare side effects after SARS-CoV-2 vaccination may resemble the heterogeneous PCC phenotype. Here, we analyze the plasma levels of 25 cytokines and SARS-CoV-2 directed antibodies in 540 individuals with or without PCC relative to one or two mRNA-based COVID-19 vaccinations as well as in 20 uninfected individuals one month after their initial mRNA-based COVID-19 vaccination. While none of the SARS-CoV-2 naïve individuals reported any persisting sequelae or exhibited PCC-like dysregulation of plasma cytokines, we detected lower levels of IL-1ß and IL-18 in patients with ongoing PCC who received one or two vaccinations at a median of six months after infection as compared to unvaccinated PCC patients. This reduction correlated with less frequent reporting of persisting gastrointestinal symptoms. These data suggest that post-infection vaccination in patients with PCC might be beneficial in a subgroup of individuals displaying gastrointestinal symptoms.

14.
Science ; 384(6691): eabo7027, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574142

RESUMO

Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.


Assuntos
Apoptose , Interleucina-4 , Macrófagos , Fagocitose , Esquistossomose mansoni , Animais , Camundongos , Apoptose/imunologia , Hepatócitos/imunologia , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/imunologia , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose/imunologia , Esquistossomose mansoni/genética , Esquistossomose mansoni/imunologia , Modelos Animais de Doenças
15.
Blood ; 118(3): 736-46, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21628413

RESUMO

Hepcidin is an antimicrobial peptide that controls systemic iron homeostasis. Hepcidin binding to its receptor ferroportin reduces iron availability, thus controlling microbial growth. In parallel it triggers an anti-inflammatory response in macrophages. Hepcidin is transcriptionally regulated by iron, through the bone morphogenetic protein-son of mothers against decapentaplegic (BMP-SMAD) pathway and by inflammation, through IL6-mediated STAT3 signaling. To investigate the mechanisms linking iron and inflammation, we treated C57BL/6 iron-deficient mice with a sublethal dose of lipopolysaccharide (LPS) and analyzed their inflammatory response in comparison with controls. We show that iron-deprived mice have a proinflammatory condition, exacerbated by LPS treatment leading to increased IL6 and TNFα mRNA in liver and spleen macrophages, and increased serum IL6 (482.29 ± 205.59 pg/mL) versus controls (69.01 ± 17.52 pg/mL; P < .05). Hepcidin was undetectable in iron-deficient mice but pretreatment with hepcidin normalized their response to LPS. Tmprss6(-/-) mice, characterized by iron deficiency and high hepcidin, show a blunted inflammatory response when challenged with LPS. Our data support a model in which the lack of hepcidin is responsible of the high inflammatory response to LPS in iron deficiency. The proinflammatory status associated with chronic iron deficiency could explain the resistance to infection seen in this condition.


Assuntos
Anemia Ferropriva/imunologia , Anemia Ferropriva/metabolismo , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/imunologia , Inflamação/metabolismo , Reação de Fase Aguda/imunologia , Reação de Fase Aguda/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Hepcidinas , Inflamação/induzido quimicamente , Interleucina-6/sangue , Interleucina-6/genética , Ferro/sangue , Lipopolissacarídeos/farmacologia , Fígado/imunologia , Fígado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Transdução de Sinais/imunologia , Proteínas Smad/metabolismo , Baço/imunologia , Baço/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética
16.
J Crohns Colitis ; 17(11): 1858-1869, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37377226

RESUMO

BACKGROUND AND AIMS: The incidence of inflammatory bowel diseases [IBD] is steadily increasing, and thus the identification of new targets to improve therapy is a major goal. Growth factors of the PDGF family and their receptors are expressed early in intestinal development and are found in mononuclear cells and macrophages in adult tissues. Macrophages play a distinct role in the pathogenesis of IBD since their function is crucial to maintaining tolerance. METHODS: We aimed to study the role of myeloid expression of PDGFR-α in mediating intestinal homeostasis in mouse IBD and infectious models. RESULTS: Our results show that loss of myeloid PDGFR-α increases susceptibility to dextran saline sulphate-induced colitis. Accordingly, LysM-PDGFR-α-/- mice showed higher colitis scores, and reduced levels of anti-inflammatory macrophages compared to control mice. This effect was mediated via a pro-colitogenic microbiota, which developed in the absence of myeloid PDGFR-α and caused increased colitis susceptibility in gnotobiotic mice upon faecal microbiota transplantation compared to controls. Furthermore, LysM-PDGFR-α-/- mice had a leaky gut, accompanied by impaired phagocytosis, resulting in a severe barrier defect. CONCLUSIONS: Taken together, our results indicate a protective role for myeloid PDGFR-α in maintaining gut homeostasis by promoting a protective intestinal microbiota and providing an anti-inflammatory macrophage phenotype.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Colite/patologia , Doenças Inflamatórias Intestinais/complicações , Células Mieloides/patologia , Anti-Inflamatórios/efeitos adversos , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
17.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766683

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver pathology worldwide. In mice and humans, NAFLD progression is characterized by the appearance of TREM2-expressing macrophages in the liver. However, their mechanistic contributions to disease progression have not been completely elucidated. Here, we show that TREM2+ macrophages prevent the generation of a pro-inflammatory response elicited by LPS-laden lipoproteins in vitro. Further, Trem2 expression regulates bone-marrow-derived macrophages (BMDMs) and Kupffer cell capacity to phagocyte apoptotic cells in vitro, which is dependent on CD14 activation. In line with this, loss of Trem2 resulted in an increased pro-inflammatory response, which ultimately aggravated liver fibrosis in murine models of NAFLD. Similarly, in a human NAFLD cohort, plasma levels of TREM2 were increased and hepatic TREM2 expression was correlated with higher levels of liver triglycerides and the acquisition of a fibrotic gene signature. Altogether, our results suggest that TREM2+ macrophages have a protective function during the progression of NAFLD, as they are involved in the processing of pro-inflammatory lipoproteins and phagocytosis of apoptotic cells and, thereby, are critical contributors for the re-establishment of liver homeostasis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Macrófagos/metabolismo , Apoptose , Glicoproteínas de Membrana/genética , Receptores Imunológicos
18.
Sci Rep ; 13(1): 11505, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460665

RESUMO

The infiltration of immune cells into sites of inflammation is one key feature of immune mediated inflammatory diseases. A detailed assessment of the in vivo dynamics of relevant cell subtypes could booster the understanding of this disease and the development of novel therapies. We show in detail how advanced X-ray fluorescence imaging enables such quantitative in vivo cell tracking, offering solutions that could pave the way beyond what other imaging modalities provide today. The key for this achievement is a detailed study of the spectral background contribution from multiple Compton scattering in a mouse-scaled object when this is scanned with a monochromatic pencil X-ray beam from a synchrotron. Under optimal conditions, the detection sensitivity is sufficient for detecting local accumulations of the labelled immune cells, hence providing experimental demonstration of in vivo immune cell tracking in mice.


Assuntos
Rastreamento de Células , Tomografia Computadorizada por Raios X , Animais , Camundongos , Tomografia Computadorizada por Raios X/métodos , Raios X , Radiografia , Imagem Óptica
19.
Cell Rep Med ; 3(6): 100663, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732153

RESUMO

Post-acute sequelae of COVID-19 (PASC) is emerging as global problem with unknown molecular drivers. Using a digital epidemiology approach, we recruited 8,077 individuals to the cohort study for digital health research in Germany (DigiHero) to respond to a basic questionnaire followed by a PASC-focused survey and blood sampling. We report the first 318 participants, the majority thereof after mild infections. Of those, 67.8% report PASC, predominantly consisting of fatigue, dyspnea, and concentration deficit, which persists in 60% over the mean 8-month follow-up period and resolves independently of post-infection vaccination. PASC is not associated with autoantibodies, but with elevated IL-1ß, IL-6, and TNF plasma levels, which we confirm in a validation cohort with 333 additional participants and a longer time from infection of 10 months. Blood profiling and single-cell data from early infection suggest the induction of these cytokines in COVID-19 lung pro-inflammatory macrophages creating a self-sustaining feedback loop.


Assuntos
COVID-19 , Citocinas , COVID-19/complicações , COVID-19/imunologia , COVID-19/patologia , Estudos de Coortes , Citocinas/imunologia , Progressão da Doença , Humanos , Testes Imunológicos , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Fator de Necrose Tumoral alfa/imunologia , Síndrome de COVID-19 Pós-Aguda
20.
Curr Opin Immunol ; 20(5): 518-23, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18599281

RESUMO

Cells of the innate immune system sense tissue damage recognizing in the extracellular environment bona fide intracellular moieties, like high mobility group box 1 (HMGB1). In the case of tumors, HMGB1 recognition has a paradoxical dual effect: it promotes tumor neoangiogenesis and triggers protective anti-neoplastic T-cell responses. Recent advances in the study of HMGB1 have identified candidate molecular mechanisms underlying these apparently contrasting outcomes. A surprising role for innate receptors, including toll like receptor 4 (TLR4), in the response to conventional cancer radio and chemotherapy has also recently emerged, providing new insight into the mechanisms by which these treatments actually work.


Assuntos
Apoptose/imunologia , Proteína HMGB1/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Receptores Imunológicos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Proteína HMGB1/imunologia , Humanos , Imunidade , Neoplasias/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/imunologia , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA