Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 21(17): 4171-89, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22574714

RESUMO

The field of molecular ecology has burgeoned into a large discipline spurred on by technical innovations that facilitate the rapid acquisition of large amounts of genotypic data, by the continuing development of theory to interpret results, and by the availability of computer programs to analyse data sets. As the discipline grows, however, misconceptions have become enshrined in the literature and are perpetuated by routine citations to other articles in molecular ecology. These misconceptions hamper a better understanding of the processes that influence genetic variation in natural populations and sometimes lead to erroneous conclusions. Here, we consider eight misconceptions commonly appearing in the literature: (i) some molecular markers are inherently better than other markers; (ii) mtDNA produces higher F(ST) values than nDNA; (iii) estimated population coalescences are real; (iv) more data are always better; (v) one needs to do a Bayesian analysis; (vi) selective sweeps influence mtDNA data; (vii) equilibrium conditions are critical for estimating population parameters; and (viii) having better technology makes us smarter than our predecessors. This is clearly not an exhaustive list and many others can be added. It is, however, sufficient to illustrate why we all need to be more critical of our own understanding of molecular ecology and to be suspicious of self-evident truths.


Assuntos
Ecologia/métodos , Genética Populacional/métodos , Biologia Molecular/métodos , Animais , Teorema de Bayes , Núcleo Celular/genética , Biologia Computacional , DNA Mitocondrial/genética , Evolução Molecular , Marcadores Genéticos , Repetições de Microssatélites , Modelos Genéticos
2.
Science ; 248(4956): 724-7, 1990 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-2333522

RESUMO

Female green turtles exhibit strong nest-site fidelity as adults, but whether the nesting beach is the natal site is not known. Under the natal homing hypothesis, females return to their natal beach to nest, whereas under the social facilitation model, virgin females follow experienced breeders to nesting beaches and after a "favorable" nesting experience, fix on that site for future nestings. Differences shown in mitochondrial DNA genotype frequency among green turtle colonies in the Caribbean Sea and Atlantic Ocean are consistent with natal homing expectations and indicate that social facilitation to nonnatal sites is rare.


Assuntos
DNA Mitocondrial/genética , Orientação , Facilitação Social , Tartarugas/fisiologia , Animais , Feminino , Genótipo , Modelos Psicológicos , Tartarugas/genética
3.
Mol Ecol ; 17(24): 5336-48, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19121001

RESUMO

Seascapes are complex environments, and populations are often isolated by factors other than distance. Here we investigate the role of coastal habitat preference and philopatry in shaping the distribution and population structure of lemon sharks. The genus Negaprion comprises the amphiatlantic lemon shark (N. brevirostris), with a relict population in the eastern Pacific, and its Indo-West Pacific sister species, the sicklefin lemon shark (N. acutidens). Analyzing 138 individuals throughout the range of N. brevirostris (N = 80) and N. acutidens (N = 58) at microsatellite loci (nine and six loci, respectively) and the mitochondrial control region, we find evidence of allopatric speciation corresponding to the Tethys Sea closure (10-14 million years ago) and isolation of the eastern Pacific N. brevirostris population via the emergence of the Isthmus of Panama (approximately 3.5 million years ago). There is significant isolation by oceanic distance (R(2) = 0.89, P = 0.005), defined as the maximum distance travelled at depths greater than 200 m. We find no evidence for contemporary transatlantic gene flow (m, M = 0.00) across an oceanic distance of approximately 2400 km. Negaprion acutidens populations in Australia and French Polynesia, separated by oceanic distances of at least 750 km, are moderately differentiated (F(ST) = 0.070-0.087, P < or = 0.001; Phi(ST) = 0.00, P = 0.99), with South Pacific archipelagos probably serving as stepping stones for rare dispersal events. Migration between coastally linked N. brevirostris populations is indicated by nuclear (m = 0.31) but not mitochondrial (m < 0.001) analyses, possibly indicating female natal site fidelity. However, philopatry is equivocal in N. acutidens, which has the lowest control region diversity (h = 0.28) of any shark yet studied. Restricted oceanic dispersal and high coastal connectivity stress the importance of both local and international conservation efforts for these threatened sharks.


Assuntos
Genética Populacional , Filogenia , Tubarões/genética , Migração Animal , Animais , DNA Mitocondrial/genética , Evolução Molecular , Feminino , Fluxo Gênico , Especiação Genética , Geografia , Haplótipos , Repetições de Microssatélites , Polimorfismo Genético , Análise de Sequência de DNA , Tubarões/classificação , Especificidade da Espécie
4.
Curr Opin Genet Dev ; 4(6): 882-6, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7888759

RESUMO

The past year has seen a further marshaling of genetic evidence for 'natal homing' in several species of marine turtles, a phenomenon wherein females, upon reaching sexual maturity, exhibit a propensity to return to nest at or near the respective beaches upon which they hatched some two or more decades earlier. This genetics-based inference stems from the strong spatial patterning observed in mitochondrial DNA lineages among nesting sites. Rookery-specific mitochondrial DNA markers are now being employed to monitor the natal sources of individuals captured at other phases of the life cycle, and the genetic findings have important conservation ramifications.


Assuntos
DNA Mitocondrial/genética , Comportamento de Nidação/fisiologia , Tartarugas/genética , Animais , Oceano Atlântico , Conservação dos Recursos Naturais , Feminino , Marcadores Genéticos , Comportamento de Retorno ao Território Vital , Tartarugas/fisiologia
5.
Genetics ; 131(1): 163-73, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1350555

RESUMO

We introduce an approach for the analysis of Mendelian polymorphisms in nuclear DNA (nDNA), using restriction fragment patterns from anonymous single-copy regions amplified by the polymerase chain reaction, and apply this method to the elucidation of population structure and gene flow in the endangered green turtle, Chelonia mydas. Seven anonymous clones isolated from a total cell DNA library were sequenced to generate primers for the amplification of nDNA fragments. Nine individuals were screened for restriction site polymorphisms at these seven loci, using 40 endonucleases. Two loci were monomorphic, while the remainder exhibited a total of nine polymorphic restriction sites and three size variants (reflecting 600-base pair (bp) and 20-bp deletions and a 20-bp insertion). A total of 256 turtle specimens from 15 nesting populations worldwide were then scored for these polymorphisms. Genotypic proportions within populations were in accord with Hardy-Weinberg expectations. Strong linkage disequilibrium observed among polymorphic sites within loci enabled multisite haplotype assignments. Estimates of the standardized variance in haplotype frequency among global collections (FST = 0.17), within the Atlantic-Mediterranean (FST = 0.13), and within the Indian-Pacific (FST = 0.13), revealed a moderate degree of population substructure. Although a previous study concluded that nesting populations appear to be highly structured with respect to female (mitochondrial DNA) lineages, estimates of Nm based on nDNA data from this study indicate moderate rates of male-mediated gene flow. A positive relationship between genetic similarity and geographic proximity suggests historical connections and/or contemporary gene flow between particular rookery populations, likely via matings on overlapping feeding grounds, migration corridors or nonnatal rookeries.


Assuntos
Núcleo Celular/química , DNA/genética , Genética Populacional , Tartarugas/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , Genótipo , Haplótipos , Heterozigoto , Homozigoto , Desequilíbrio de Ligação , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
6.
Evolution ; 55(3): 561-72, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11327163

RESUMO

Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.


Assuntos
Evolução Molecular , Peixes/genética , Variação Genética , Filogenia , Animais , Oceano Atlântico , Grupo dos Citocromos b/genética , DNA Mitocondrial/genética , Meio Ambiente , Peixes/classificação , Oceanos e Mares , Oceano Pacífico , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
7.
Evolution ; 55(4): 807-20, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11392398

RESUMO

Many examples of cryptic marine species have been demonstrated with biochemical and molecular studies. In most cases, a broadly distributed taxon is actually a group of sibling species that can be distinguished (upon closer examination) by ecological or morphological characters. Fishes of the family Albulidae constitute a notable exception. Bonefish (Albula spp.) morphology and ecology are highly conserved around the globe, and their extended pelagic larval stage could allow population connections on a vast geographic scale. Based on this perceived homogeneity, bonefishes were classified as a single pantropical species, A. vulpes. However, allozyme studies of Hawaiian populations indicated that two sympatric species (A. glossodonta and A. neoguinaica) are included in the synonymy of A. vulpes. To ascertain the number and distribution of evolutionary partitions in Albula, we surveyed 564 bp of mitochondrial DNA (mtDNA) cytochrome b from 174 individuals collected at 26 locations. Sequence comparisons reveal eight deep lineages (d = 5.56-30.6%) and significant population structure within three of the four lineages that could be tested (phiST = 0.047-0.678). These findings confirm the genetic distinctiveness of the three species noted above and invoke the possibility of five additional species. Clock estimates for mtDNA indicate that these putative species arose 4-20 million years ago. Distinct evolutionary lineages coexist in several sample locations, yet show little morphological or ecological differentiation in sympatry. Thus, bonefish species seem to defy the evolutionary conventions of morphological differentiation over time and ecological displacement in sympatry. Despite multiple cases of sympatry, sister-taxa relationships inferred from mtDNA indicate that divergence in allopatry has been the predominant speciation mechanism in Albula. Stabilizing selection in the homogeneous habitat occupied by bonefishes (tropical sand flats) could promote the retention of highly conserved morphology and ecology.


Assuntos
Evolução Molecular , Peixes/genética , Filogenia , Animais , Sequência de Bases , Grupo dos Citocromos b/genética , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Dados de Sequência Molecular , Oceanos e Mares , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
9.
Phytopathology ; 92(11): 1245-52, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18944251

RESUMO

ABSTRACT Isolates of Colletotrichum spp. from diseased strawberry fruit and crowns were evaluated to determine their genetic diversity and the etiology of the diseases. Isolates were identified to species using polymerase chain reaction primers for a ribosomal internal transcribed spacer region and their pathogenicity was evaluated in bioassays. Isolates were scored for variation at 40 putative genetic loci with random amplified polymorphic DNA and microsatellite markers. Only C. acutatum was recovered from diseased fruit. Nearly all isolates from crowns were C. gloeosporioides. In crown bioassays, only isolates of C. gloeosporioides from strawberry caused collapse and death of plants. A dendrogram generated from the genetic analysis identified several primary lineages. One lineage included isolates of C. acutatum from fruit and was characterized by low diversity. Another lineage included isolates of C. gloeosporioides from crowns and was highly polymorphic. The isolates from strawberry formed distinctive clusters separate from citrus isolates. Evaluation of linkage disequilibrium among polymorphic loci in isolates of C. gloeosporioides from crowns revealed a low level of disequilibrium as would be expected in sexually recombining populations. These results suggest that epidemics of crown rot are caused by Glomerella cingulata (anamorph C. gloeosporioides) and that epidemics of fruit rot are caused by C. acutatum.

10.
Aquat Conserv ; 22(2): 232-261, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25505830

RESUMO

The Chagos Archipelago was designated a no-take marine protected area (MPA) in 2010; it covers 550 000 km2, with more than 60 000 km2 shallow limestone platform and reefs. This has doubled the global cover of such MPAs.It contains 25-50% of the Indian Ocean reef area remaining in excellent condition, as well as the world's largest contiguous undamaged reef area. It has suffered from warming episodes, but after the most severe mortality event of 1998, coral cover was restored after 10 years.Coral reef fishes are orders of magnitude more abundant than in other Indian Ocean locations, regardless of whether the latter are fished or protected.Coral diseases are extremely low, and no invasive marine species are known.Genetically, Chagos marine species are part of the Western Indian Ocean, and Chagos serves as a 'stepping-stone' in the ocean.The no-take MPA extends to the 200 nm boundary, and. includes 86 unfished seamounts and 243 deep knolls as well as encompassing important pelagic species.On the larger islands, native plants, coconut crabs, bird and turtle colonies were largely destroyed in plantation times, but several smaller islands are in relatively undamaged state.There are now 10 'important bird areas', coconut crab density is high and numbers of green and hawksbill turtles are recovering.Diego Garcia atoll contains a military facility; this atoll contains one Ramsar site and several 'strict nature reserves'. Pollutant monitoring shows it to be the least polluted inhabited atoll in the world. Today, strict environmental regulations are enforced.Shoreline erosion is significant in many places. Its economic cost in the inhabited part of Diego Garcia is very high, but all islands are vulnerable.Chagos is ideally situated for several monitoring programmes, and use is increasingly being made of the archipelago for this purpose.

11.
Mol Ecol ; 17(19): 4233-47, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19378403

RESUMO

The population genetic structure and phylogeography of wahoo, Acanthocybium solandri, were investigated on a global scale with intron six of lactate dehydrogenase-A (ldhA6, 8 locations, N = 213) and mtDNA cytochrome b (Cytb, 10 locations, N = 322). Results show extensive sharing of haplotypes across the wahoo's entire global range, and analyses were unable to detect significant structure (nuclear F(ST) = 0.0125, P = 0.106; mtDNA Phi(ST) < 0.0001, P = 0.634). Power analyses indicated 95% confidence in detecting nuclear F(ST) > or = 0.0389 and mtDNA Phi(ST) > or = 0.0148. These findings appear unique, as most other tunas, billfishes, and oceanic sharks exhibit significant population structure on the scale of East-West Atlantic, Atlantic vs. Indian-Pacific, or East-West Pacific. Overall nuclear heterozygosity (H = 0.714) and mtDNA haplotype diversity (h = 0.918) are both high in wahoo, while overall mtDNA nucleotide diversity (pi = 0.006) and nuclear nucleotide diversity (pi = 0.004) are uniformly low, indicating a recent increase in population size. Coalescence analyses yield an estimate of effective female population size (NeF) at approximately 816,000, and a population bottleneck approximately 690,000 years ago. However, conclusions about population history from our Cytb data set are not concordant with a control region survey, a finding that will require further investigation. This is the first example of a vertebrate with a single globally distributed population, a finding we attribute to extensive dispersal at all life stages. The indications of a worldwide stock for wahoo reinforce the mandate for international cooperation on fisheries issues.


Assuntos
Atum/genética , Animais , Oceano Atlântico , DNA/genética , DNA/isolamento & purificação , Primers do DNA , DNA Mitocondrial/genética , Ecossistema , Feminino , Genética Populacional , Oceano Índico , Íntrons/genética , Isoenzimas/genética , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5 , Modelos Genéticos , Oceano Pacífico , Reação em Cadeia da Polimerase , Densidade Demográfica , Especificidade da Espécie
12.
Mol Ecol ; 16(23): 4886-907, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17944856

RESUMO

The seven species of sea turtles occupy a diversity of niches, and have a history tracing back over 100 million years, yet all share basic life-history features, including exceptional navigation skills and periodic migrations from feeding to breeding habitats. Here, we review the biogeographic, behavioural, and ecological factors that shape the distribution of genetic diversity in sea turtles. Natal homing, wherein turtles return to their region of origin for mating and nesting, has been demonstrated with mtDNA sequences. These maternally inherited markers show strong population structure among nesting colonies while nuclear loci reveal a contrasting pattern of male-mediated gene flow, a phenomenon termed 'complex population structure'. Mixed-stock analyses indicate that multiple nesting colonies can contribute to feeding aggregates, such that exploitation of turtles in these habitats can reduce breeding populations across the region. The mtDNA data also demonstrate migrations across entire ocean basins, some of the longest movements of marine vertebrates. Multiple paternity occurs at reported rates of 0-100%, and can vary by as much as 9-100% within species. Hybridization in almost every combination among members of the Cheloniidae has been documented but the frequency and ultimate ramifications of hybridization are not clear. The global phylogeography of sea turtles reveals a gradient based on habitat preference and thermal regime. The cold-tolerant leatherback turtle (Dermochelys coriacea) shows no evolutionary partitions between Indo-Pacific and Atlantic populations, while the tropical green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and ridleys (Lepidochelys olivacea vs. L. kempi) have ancient separations between oceans. Ridleys and loggerhead (Caretta caretta) also show more recent colonization between ocean basins, probably mediated by warm-water gyres that occasionally traverse the frigid upwelling zone in southern Africa. These rare events may be sufficient to prevent allopatric speciation under contemporary geographic and climatic conditions. Genetic studies have advanced our understanding of marine turtle biology and evolution, but significant gaps persist and provide challenges for the next generation of sea turtle geneticists.


Assuntos
Genética Populacional , Tartarugas/genética , Animais , Oceano Atlântico , Região do Caribe , DNA Mitocondrial/genética , Geografia , Haplótipos/genética , Comportamento de Retorno ao Território Vital , Mar Mediterrâneo , Comportamento de Nidação , Oceano Pacífico , Filogenia , Tartarugas/classificação , Tartarugas/crescimento & desenvolvimento
13.
Mol Ecol ; 16(1): 49-60, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17181720

RESUMO

Hawksbill turtles (Eretmochelys imbricata) migrate between nesting beaches and feeding habitats that are often associated with tropical reefs, but it is uncertain which nesting colonies supply which feeding habitats. To address this gap in hawksbill biology, we compile previously published and new mitochondrial DNA (mtDNA) haplotype data for 10 nesting colonies (N = 347) in the western Atlantic and compare these profiles to four feeding populations and four previously published feeding samples (N = 626). Nesting colonies differ significantly in mtDNA haplotype frequencies (Phi(ST) = 0.588, P < 0.001), corroborating earlier conclusions of nesting site fidelity and setting the stage for mixed-stock analysis. Feeding aggregations show lower but significant structure (Phi(ST) = 0.089, P < 0.001), indicating that foraging populations are not homogenous across the Caribbean Sea. Bayesian mixed-stock estimates of the origins of juveniles in foraging areas show a highly significant, but shallow, correlation with nesting population size (r = 0.378, P = 0.004), supporting the premise that larger rookeries contribute more juveniles to feeding areas. A significant correlation between the estimated contribution and geographical distance from nesting areas (r = -0.394, P = 0.003) demonstrates the influence of proximity on recruitment to feeding areas. The influence of oceanic currents is illustrated by pelagic stage juveniles stranded in Texas, which are assigned primarily (93%) to the upstream rookery in Yucatan. One juvenile had a haplotype previously identified only in the eastern Atlantic, invoking rare trans-oceanic migrations. The mixed-stock analysis demonstrates that harvests in feeding habitats will impact nesting colonies throughout the region, with the greatest detriment to nearby nesting populations.


Assuntos
Migração Animal , Tartarugas/genética , Animais , Oceano Atlântico , Teorema de Bayes , Região do Caribe , DNA Mitocondrial/química , Geografia , Haplótipos , Filogenia , Análise de Sequência de DNA , Tartarugas/crescimento & desenvolvimento , Tartarugas/fisiologia
14.
Mol Ecol ; 16(24): 5183-92, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18092992

RESUMO

Large pelagic vertebrates pose special conservation challenges because their movements generally exceed the boundaries of any single jurisdiction. To assess the population structure of whale sharks (Rhincodon typus), we sequenced complete mitochondrial DNA control regions from individuals collected across a global distribution. We observed 51 single site polymorphisms and 8 regions with indels comprising 44 haplotypes in 70 individuals, with high haplotype (h = 0.974 +/- 0.008) and nucleotide diversity (pi = 0.011 +/- 0.006). The control region has the largest length variation yet reported for an elasmobranch (1143-1332 bp). Phylogenetic analyses reveal no geographical clustering of lineages and the most common haplotype was distributed globally. The absence of population structure across the Indian and Pacific basins indicates that oceanic expanses and land barriers in Southeast Asia are not impediments to whale shark dispersal. We did, however, find significant haplotype frequency differences (AMOVA, Phi(ST) = 0.107, P < 0.001) principally between the Atlantic and Indo-Pacific populations. In contrast to other recent surveys of globally distributed sharks, we find much less population subdivision and no evidence for cryptic evolutionary partitions. Discovery of the mating and pupping areas of whale sharks is key to further population genetic studies. The global pattern of shared haplotypes in whale sharks provides a compelling argument for development of broad international approaches for management and conservation of Earth's largest fish.


Assuntos
Genética Populacional , Tubarões/genética , Animais , Variação Genética/genética , Haplótipos , Biologia Marinha , Nucleotídeos/genética , Tubarões/classificação , Fatores de Tempo
15.
Mol Ecol ; 15(8): 2239-51, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16780437

RESUMO

Large marine fishes typically have little population genetic structure. The exceptions are associated with sedentary behaviour, disjunct distributions, or reproductive philopatry. Scalloped hammerhead sharks (Sphyrna lewini) incorporate the contrasting traits of oceanic habitat (usually associated with high dispersal) and possible fidelity to nursery grounds (for reproductive females). To evaluate the expectations of these contrasting behaviours, we examined the global genetic structure of S. lewini based on collections (n = 271 individuals) from 20 nursery areas. A 548-bp fragment of mitochondrial DNA control region revealed 22 polymorphic sites, 24 haplotypes, and three lineages distinguished by 2.56-3.77% sequence divergence. Coalescence analyses based on a provisional molecular clock indicate an origin in the Indo-West Pacific with late Pleistocene radiations into the central Pacific (Hawaii) and eastern Pacific (Central America), as well as recent interchange between oceans via southern Africa. Population subdivisions are strong (overall Phi(ST) = 0.749, P < 0.0001 and among oceans Phi(ST) = 0.598, P < 0.0098). Genetic discontinuity within oceans (Phi(ST) = 0.519, P < 0.0001) is primarily associated with oceanic barriers (migration across oceans M approximately 0), with much less structure along continental margins (M > 10). We conclude that nursery populations linked by continuous coastline have high connectivity, but that oceanic dispersal by females is rare. Although we cannot rule out philopatry to natal nurseries, oceanic barriers appear to have a much stronger influence on the genetic architecture of this species and may indicate a mechanism for recent evolutionary radiations in the genus Sphyrna.


Assuntos
Variação Genética , Genética Populacional , Filogenia , Tubarões/genética , Animais , DNA Mitocondrial , Feminino , Masculino , Densidade Demográfica
16.
J Hered ; 97(1): 1-12, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16394255

RESUMO

Pygmy angelfishes (genus Centropyge) are widespread and species-rich in the Indo-Pacific, but only three species are recognized in the Atlantic: Centropyge resplendens on the Mid-Atlantic Ridge, Centropyge argi in the Caribbean, and Centropyge aurantonotus in Brazil and the southern Caribbean. Atlantic species are distinguished only by color patterns and are very similar to Centropyge acanthops (Cac) in the western Indian Ocean, raising the possibility that pygmy angelfish recently invaded the Atlantic Ocean via southern Africa. To test this zoogeographic hypothesis, we compared a 454-bp segment of the mitochondrial DNA (mtDNA) control region among pygmy angelfishes of the subgenus Xiphypops, which includes the three Atlantic species, the Indian Ocean species, and an Indo-Pacific species [Centropyge fisheri (Cfi)]. The Indian Ocean species Cac is closest to the Atlantic species (d = 0.059) relative to Cfi (d = 0.077). The mtDNA genealogy indicates a colonization pathway from the Indian Ocean directly to the West Atlantic, followed by at least two waves of dispersal to the Mid-Atlantic Ridge. The gene tree for the three Atlantic species is polyphyletic, raising questions about taxonomic assignments based on color pattern. Mismatch distributions place Atlantic founder events and population expansions at about 250,000-500,000 years ago. Estimates of effective female population sizes from mismatch and coalescence analyses are consistent with founder events by tens of individuals in the western Atlantic, followed by expansions to several million individuals.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Peixes/genética , Animais , Oceano Atlântico , Classificação , Estudos de Avaliação como Assunto , Feminino , Peixes/classificação , Variação Genética , Genética Populacional , Haplótipos , Oceano Índico , Cadeias de Markov , Filogenia , Pigmentação/genética , Especificidade da Espécie
17.
Mol Ecol ; 14(8): 2389-402, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15969722

RESUMO

Complex population structure can result from either sex-biased gene flow or population overlap during migrations. Loggerhead turtles (Caretta caretta) have both traits, providing an instructive case history for wildlife management. Based on surveys of maternally inherited mtDNA, pelagic post-hatchlings show no population structure across the northern Atlantic (phi(ST) < 0.001, P = 0.919), subadults in coastal habitat show low structure among locations (phi(ST) = 0.01, P < 0.005), and nesting colonies along the southeastern coast of the United States have strong structure (phi(ST) = 0.42, P < 0.001). Thus the level of population structure increases through progressive life history stages. In contrast, a survey of biparentally inherited microsatellite DNA shows no significant population structure: R(ST) < 0.001; F(ST) = 0.002 (P > 0.05) across the same nesting colonies. These results indicate that loggerhead females home faithfully to their natal nesting colony, but males provide an avenue of gene flow between regional nesting colonies, probably via opportunistic mating in migratory corridors. As a result, all breeding populations in the southeastern United States have similar levels of microsatellite diversity (H(E) = 0.70-0.89), whereas mtDNA haplotype diversity varies dramatically (h = 0.00-0.66). Under a conventional interpretation of the nuclear DNA data, the entire southeastern United States would be regarded as a single management unit, yet the mtDNA data indicate multiple isolated populations. This complex population structure mandates a different management strategy at each life stage. Perturbations to pelagic juveniles will have a diffuse impact on Atlantic nesting colonies, mortality of subadults will have a more focused impact on nearby breeding populations, and disturbances to adults will have pinpoint impact on corresponding breeding populations. These findings demonstrate that surveys of multiple life stages are desirable to resolve management units in migratory marine species.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Variação Genética , Genética Populacional , Comportamento de Retorno ao Território Vital/fisiologia , Estágios do Ciclo de Vida/fisiologia , Tartarugas/genética , Análise de Variância , Animais , Oceano Atlântico , Primers do DNA , DNA Mitocondrial/genética , Feminino , Triagem de Portadores Genéticos , Geografia , Masculino , Repetições de Microssatélites/genética , Modelos Genéticos , Fatores Sexuais , Tartarugas/fisiologia , Estados Unidos
18.
Mol Ecol ; 8(12 Suppl 1): S5-10, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10703547

RESUMO

The scientific foundations of conservation policy are the subject of a recent tripolar debate, with systematists arguing for the primacy of phylogenetic rankings, ecologists arguing for protection at the level of populations or ecosystems, and evolutionary biologists urging more attention for the factors that enhance adaptation and biodiversity. In the field of conservation genetics, this controversy is manifested in the diverse viewpoints of molecular systematists, population biologists, and evolutionary (and quantitative) geneticists. A resolution of these viewpoints is proposed here, based on the premise that preserving particular objects (genes, species, or ecosystems) is not the ultimate goal of conservation. In order to be successful, conservation efforts must preserve the processes of life. This task requires the identification and protection of diverse branches in the tree of life (phylogenetics), the maintenance of life-support systems for organisms (ecology), and the continued adaptation of organisms to changing environments (evolution). None of these objectives alone is sufficient to preserve the threads of life across time. Under this temporal perspective, molecular genetic technologies have applications in all three conservation agendas; DNA sequence comparisons serve the phylogenetic goals, population genetic markers serve the ecological goals, quantitative genetics and genome explorations serve the evolutionary goals.


Assuntos
Ecossistema , Animais , Carnívoros/genética , Conservação dos Recursos Naturais , Evolução Molecular , Peixes/genética , Genes , Genética Populacional , Percas/genética , Filogenia , Especificidade da Espécie , Tartarugas/genética
19.
Evolution ; 51(5): 1601-1610, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28568639

RESUMO

Sardines (Sardinops spp.) occupy temperate upwelling zones in the coastal regions of the Indian and Pacific Oceans, including locations in Japan, California, Chile, Australia, and South Africa. East and West Pacific populations are separated by vast expanses of open ocean, and northern and southern hemisphere populations are separated by tropical waters which are lethal to sardines. The relative importance of these barriers has been the focus of a longstanding debate between vicariance and dispersal schools in biogeography. Comparisons of a 500 bp fragment of the mitochondrial (mt) DNA control region reveal strong geographic structuring of mtDNA lineages but shallow divergence both within and between regional populations. Regional populations are related to one another in a stepping-stone pattern, the apparent result of a series of Pleistocene dispersal events around the continental margins of the Indian-Pacific Basin. These mtDNA data, combined with an electrophoretic survey of variability at 34 nuclear loci (Grant and Leslie 1996), indicate that the five regional forms of Sardinops (considered separate taxa by most authorities) probably diverged within 500,000 years BP, a much shorter timeframe than predicted by vicariance models based on plate tectonics. High mtDNA haplotype diversity, coupled with an excess of rare alleles in the protein electrophoretic dataset, may indicate exponential growth from a small ancestral population. The mtDNA and allozyme data are concordant with climate records and fossil evidence in portraying regional populations as recent, unstable, and ephemeral. Regional populations of sardines have probably been extinguished and recolonized over short evolutionary timescales in response to changes in climate and the oceanography of coastal upwelling zones.

20.
Nature ; 352(6337): 709-11, 1991 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-1876185

RESUMO

The endangered Kemp's ridley sea turtle (Lepidochelys kempi) nests almost exclusively at a single locality in the western Gulf of Mexico, whereas the olive ridley (L. olivacea) nests globally in warm oceans. Morphological similarities between kempi and olivacea, and a geographical distribution that "...makes no sense at all under modern conditions of climate and geography", raise questions about the degree of evolutionary divergence between these taxa. Analysis of mitochondrial (mt) DNA restriction sites shows that Kemp's ridley is distinct from the olive ridley in matriarchal phylogeny, and that the two are sister taxa with respect to other marine turtles. Separation of olive and the Kemp's ridley lineages may date to formation of the Isthmus of Panama, whereas the global spread of the olive ridley lineage occurred recently. In contrast to recent examples in which molecular genetic assessments challenged systematic assignments underlying conservation programmes, our mtDNA data corroborate the taxonomy of an endangered form.


Assuntos
Tartarugas/classificação , Animais , DNA Mitocondrial/genética , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Tartarugas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA