Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0092024, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874337

RESUMO

Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.

2.
Clin Chem ; 69(8): 808-868, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37473453

RESUMO

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH: An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus , Humanos , Hemoglobinas Glicadas , Glicemia/análise , Automonitorização da Glicemia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Insulina
3.
Clin Chem ; 69(8): 777-784, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37562009

RESUMO

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for laboratory analysis in patients with diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments in the full version of the guideline). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the patients measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring; genetic testing; and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Assuntos
Glicemia , Diabetes Mellitus , Humanos , Estados Unidos , Hemoglobinas Glicadas , Glicemia/análise , Automonitorização da Glicemia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Insulina
4.
Appl Environ Microbiol ; 89(1): e0187422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602323

RESUMO

Cyclic AMP (cAMP) receptor protein (CRP), encoded by crp, is a global regulator that is activated by cAMP, a second messenger synthesized by a class I adenylate cyclase (AC-I) encoded by cyaA in Escherichia coli. cAMP-CRP is required for growth on nonpreferred carbon sources and is a global regulator. We constructed in-frame nonpolar deletions of the crp and cyaA homologs in Vibrio parahaemolyticus and found that the Δcrp mutant did not grow in minimal media supplemented with nonpreferred carbon sources, but the ΔcyaA mutant grew similarly to the wild type. Bioinformatics analysis of the V. parahaemolyticus genome identified a 181-amino-acid protein annotated as a class IV adenylate cyclase (AC-IV) named CyaB, a member of the CYTH protein superfamily. AC-IV phylogeny showed that CyaB was present in Gammaproteobacteria and Alphaproteobacteria as well as Planctomycetes and Archaea. Only the bacterial CyaB proteins contained an N-terminal motif, HFxxxxExExK, indicative of adenylyl cyclase activity. Both V. parahaemolyticus cyaA and cyaB genes functionally complemented an E. coli ΔcyaA mutant. The Δcrp and ΔcyaB ΔcyaA mutants showed defects in growth on nonpreferred carbon sources and in swimming and swarming motility, indicating that cAMP-CRP is an activator. The ΔcyaA and ΔcyaB single mutants had no defects in these phenotypes, indicating that AC-IV complements AC-I. Capsule polysaccharide and biofilm production assays showed significant defects in the Δcrp, ΔcyaBΔcyaA, and ΔcyaB mutants, whereas the ΔcyaA strain behaved similarly to the wild type. This is consistent with a role of cAMP-CRP as an activator of these phenotypes and establishes a cellular role for AC-IV in capsule and biofilm formation, which to date has been unestablished. IMPORTANCE Here, we characterized the roles of CRP and CyaA in V. parahaemolyticus, showing that cAMP-CRP is an activator of metabolism, motility, capsule production, and biofilm formation. These results are in contrast to cAMP-CRP in V. cholerae, which represses capsule and biofilm formation. Previously, only an AC-I CyaA had been identified in Vibrio species. Our data showed that an AC-IV CyaB homolog is present in V. parahaemolyticus and is required for optimal growth. The data demonstrated that CyaB is essential for capsule production and biofilm formation, uncovering a physiological role of AC-IV in bacteria. The data showed that the cyaB gene was widespread among Vibrionaceae species and several other Gammaproteobacteria, but in general, its phylogenetic distribution was limited. Our phylogenetic analysis also demonstrated that in some species the cyaB gene was acquired by horizontal gene transfer.


Assuntos
Adenilil Ciclases , Vibrio parahaemolyticus , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , AMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Biofilmes , Polissacarídeos
5.
Appl Environ Microbiol ; 89(6): e0047923, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37278653

RESUMO

Bacteria accumulate compatible solutes to maintain cellular turgor pressure when exposed to high salinity. In the marine halophile Vibrio parahaemolyticus, the compatible solute ectoine is biosynthesized de novo, which is energetically more costly than uptake; therefore, tight regulation is required. To uncover novel regulators of the ectoine biosynthesis ectABC-asp_ect operon, a DNA affinity pulldown of proteins interacting with the ectABC-asp_ect regulatory region was performed. Mass spectrometry analysis identified, among others, 3 regulators: LeuO, NhaR, and the nucleoid associated protein H-NS. In-frame non-polar deletions were made for each gene and PectA-gfp promoter reporter assays were performed in exponential and stationary phase cells. PectA-gfp expression was significantly repressed in the ΔleuO mutant and significantly induced in the ΔnhaR mutant compared to wild type, suggesting positive and negative regulation, respectively. In the Δhns mutant, PectA-gfp showed increased expression in exponential phase cells, but no change compared to wild type in stationary phase cells. To examine whether H-NS interacts with LeuO or NhaR at the ectoine regulatory region, double deletion mutants were created. In a ΔleuO/Δhns mutant, PectA-gfp showed reduced expression, but significantly more than ΔleuO, suggesting H-NS and LeuO interact to regulate ectoine expression. However, ΔnhaR/Δhns had no additional effect compared to ΔnhaR, suggesting NhaR regulation is independent of H-NS. To examine leuO regulation further, a PleuO-gfp reporter analysis was examined that showed significantly increased expression in the ΔleuO, Δhns, and ΔleuO/Δhns mutants compared to wild type, indicating both are repressors. Growth pattern analysis of the mutants in M9G 6%NaCl showed growth defects compared to wild type, indicating that these regulators play an important physiological role in salinity stress tolerance outside of regulating ectoine biosynthesis gene expression. IMPORTANCE Ectoine is a commercially used compatible solute that acts as a biomolecule stabilizer because of its additional role as a chemical chaperone. A better understanding of how the ectoine biosynthetic pathway is regulated in natural bacterial producers can be used to increase efficient industrial production. The de novo biosynthesis of ectoine is essential for bacteria to survive osmotic stress when exogenous compatible solutes are absent. This study identified LeuO as a positive regulator and NhaR as a negative regulator of ectoine biosynthesis and showed that, similar to enteric species, LeuO is an anti-silencer of H-NS. In addition, defects in growth in high salinity among all the mutants suggest that these regulators play a broader role in the osmotic stress response beyond ectoine biosynthesis regulation.


Assuntos
Diamino Aminoácidos , Vibrio parahaemolyticus , Fatores de Transcrição/genética , Vibrio parahaemolyticus/metabolismo , Regiões Promotoras Genéticas , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Adv Exp Med Biol ; 1404: 195-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792877

RESUMO

Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Cólera/microbiologia , Intestinos/microbiologia , Virulência , Nutrientes , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
J Bacteriol ; 204(1): e0035021, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633869

RESUMO

Bacterial cells alter gene expression in response to changes in population density in a process called quorum sensing (QS). In Vibrio harveyi, LuxO, a low-cell-density activator of sigma factor-54 (RpoN), is required for transcription of five noncoding regulatory small RNAs (sRNAs), Qrr1 to Qrr5, which each repress translation of the master QS regulator, LuxR. Vibrio parahaemolyticus, the leading cause of bacterial seafoodborne gastroenteritis, also contains five Qrr sRNAs that control OpaR (the LuxR homolog), controlling capsule polysaccharide (CPS), motility, and metabolism. We show that in a ΔluxO deletion mutant, opaR was derepressed and CPS and biofilm were produced. However, in a ΔrpoN mutant, opaR was repressed, no CPS was produced, and less biofilm production was observed than in the wild type. To determine why opaR was repressed, expression analysis in ΔluxO showed that all five qrr genes were repressed, while in ΔrpoN the qrr2 gene was significantly derepressed. Reporter assays and mutant analysis showed that Qrr2 sRNA can act alone to control OpaR. Bioinformatics analysis identified a sigma-70 (RpoD) -35 -10 promoter overlapping the canonical sigma-54 (RpoN) -24 -12 promoter in the qrr2 regulatory region. The qrr2 sigma-70 promoter element was also present in additional Vibrio species, indicating that it is widespread. Mutagenesis of the sigma-70 -10 promoter site in the ΔrpoN mutant background resulted in repression of qrr2. Analysis of qrr quadruple deletion mutants, in which only a single qrr gene is present, showed that only Qrr2 sRNA can act independently to regulate opaR. Mutant and expression data also demonstrated that RpoN and the global regulator, Fis, act additively to repress qrr2. Our data have uncovered a new mechanism of qrr expression and show that Qrr2 sRNA is sufficient for OpaR regulation. IMPORTANCE The quorum sensing noncoding small RNAs (sRNAs) are present in all Vibrio species but vary in number and regulatory roles among species. In the Harveyi clade, all species contain five qrr genes, and in Vibrio harveyi these are transcribed by sigma-54 and are additive in function. In the Cholerae clade, four qrr genes are present, and in Vibrio cholerae the qrr genes are redundant in function. In Vibrio parahaemolyticus, qrr2 is controlled by two overlapping promoters. In an rpoN mutant, qrr2 is transcribed from a sigma-70 promoter that is present in all V. parahaemolyticus strains and in other species of the Harveyi clade, suggesting a conserved mechanism of regulation. Qrr2 sRNA can function as the sole Qrr sRNA to control OpaR.


Assuntos
Proteínas de Bactérias/metabolismo , Percepção de Quorum/fisiologia , RNA Bacteriano/metabolismo , Vibrio parahaemolyticus/fisiologia , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Filogenia , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , RNA Bacteriano/genética , Fator sigma/genética , Fator sigma/metabolismo , Vibrio parahaemolyticus/genética
8.
BMC Med ; 20(1): 490, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36536359

RESUMO

BACKGROUND: Leukocyte telomere length (LTL) is suggested to be a biomarker of biological age and reported to be associated with metabolic diseases such as type 2 diabetes. Glucose metabolic traits including glucose and insulin levels have been reported to be associated with LTL in adulthood. However, there is relatively little research focusing on children's LTL and the association with prenatal exposures. This study investigates the relationship between maternal and offspring glucose metabolism with offspring LTL in early life. METHODS: This study included 882 mother-child pairs from the HAPO Hong Kong Field Centre, with children evaluated at age 7.0 ± 0.4 (mean ± SD) years. Glucose metabolic traits including maternal post-load glucose during pregnancy, children's glucose and insulin levels, and their derived indices at follow-up were measured or calculated. Offspring LTL was assessed using real-time polymerase chain reaction. RESULTS: Sex- and age-adjusted children's LTL was found to be associated with children's HOMA-IR (ß=-0.046 ± 0.016, p=0.005). Interestingly, both children's and maternal post-load glucose levels were positively associated with children's LTL. However, negative associations were observed between children's LTL and children's OGTT insulin levels. In addition, the LTL in females was more strongly associated with pancreatic beta-cell function whilst LTL in males was more strongly associated with OGTT glucose levels. CONCLUSIONS: Our findings suggest a close association between maternal and offspring glucose metabolic traits with early life LTL, with the offspring sex as an important modifier of the disparate relationships in insulin production and response.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Gravidez , Feminino , Humanos , Adulto , Criança , Estudos Longitudinais , Caracteres Sexuais , Leucócitos , Insulina/metabolismo , Glucose/metabolismo , Telômero
9.
Diabetologia ; 64(3): 561-570, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33191479

RESUMO

AIMS/HYPOTHESIS: We aimed to examine associations of newborn anthropometric measures with childhood glucose metabolism with the hypothesis that greater newborn birthweight, adiposity and cord C-peptide are associated with higher childhood glucose levels and lower insulin sensitivity. METHODS: Data from the international, multi-ethnic, population-based Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study and the HAPO Follow-Up Study were used. The analytic cohort included 4155 children (mean age [SD], 11.4 [1.2] years; 51.0% male). Multiple linear regression was used to examine associations of primary predictors, birthweight, newborn sum of skinfolds (SSF) and cord C-peptide, from HAPO with continuous child glucose outcomes from the HAPO Follow-Up Study. RESULTS: In an initial model that included family history of diabetes and maternal BMI during pregnancy, birthweight and SSF demonstrated a significant, inverse association with 30 min and 1 h plasma glucose levels. In the primary model, which included further adjustment for maternal sum of glucose z scores from an oral glucose tolerance test during pregnancy, the associations were strengthened, and birthweight and SSF were inversely associated with fasting, 30 min, 1 h and 2 h plasma glucose levels. Birthweight and SSF were also associated with higher insulin sensitivity (Matsuda index) (ß = 1.388; 95% CI 0.870, 1.906; p < 0.001; ß = 0.792; 95% CI 0.340, 1.244; p < 0.001, for birthweight and SSF higher by 1 SD, respectively) in the primary model, while SSF, but not birthweight, was positively associated with the disposition index, a measure of beta cell compensation for insulin resistance (ß = 0.034; 95% CI 0.012, 0.056; p = 0.002). Cord C-peptide levels were inversely associated with Matsuda index (ß = -0.746; 95% CI -1.188, -0.304; p < 0.001 for cord C-peptide higher by 1 SD) in the primary model. CONCLUSIONS/INTERPRETATION: This study demonstrates that higher birthweight and SSF are associated with greater childhood insulin sensitivity and lower glucose levels following a glucose load, associations that were further strengthened after adjustment for maternal glucose levels during pregnancy. Graphical abstract.


Assuntos
Adiposidade , Peso ao Nascer , Glicemia/metabolismo , Peptídeo C/sangue , Sangue Fetal/metabolismo , Hiperglicemia/sangue , Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Adulto , Fatores Etários , Biomarcadores/sangue , Criança , Feminino , Seguimentos , Humanos , Hiperglicemia/diagnóstico , Hiperglicemia/fisiopatologia , Recém-Nascido , Masculino , Gravidez , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Dobras Cutâneas , Adulto Jovem
10.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355097

RESUMO

Dimethylsulfoniopropionate (DMSP), a key component of the global geochemical sulfur cycle, is a secondary metabolite produced in large quantities by marine phytoplankton and utilized as an osmoprotectant, thermoprotectant and antioxidant. Marine bacteria can use two pathways to degrade and catabolize DMSP, a demethylation pathway and a cleavage pathway that produces the climate active gas dimethylsulfide (DMS). Whether marine bacteria can also accumulate DMSP as an osmoprotectant to maintain the turgor pressure of the cell in response to changes in external osmolarity has received little attention. The marine halophile Vibrio parahaemolyticus, contains at least six osmolyte transporters, four betaine carnitine choline transport (BCCT) carriers BccT1-BccT4 and two ABC-family ProU transporters. In this study, we showed that DMSP is used as an osmoprotectant by V. parahaemolyticus and several other Vibrio species including V. cholerae and V. vulnificus Using a V. parahaemolyticus proU double mutant, we demonstrated that these ABC transporters are not required for DMSP uptake. However, a bccT null mutant lacking all four BCCTs had a growth defect compared to wild type in high salinity media supplemented with DMSP. Using mutants possessing only one functional BCCT in growth pattern assays, we identified two BCCT-family transporters, BccT1 and BccT2, which are carriers of DMSP. The only V. parahaemolyticus BccT homolog that V. cholerae and V. vulnificus possess is BccT3 and functional complementation in Escherichia coli MKH13 showed V. cholerae VcBccT3 could transport DMSP. In V. vulnificus strains, we identified and characterized an additional BCCT family transporter, which we named BccT5 that was also a carrier for DMSP.Importance DMSP is present in the marine environment, produced in large quantities by marine phytoplankton as an osmoprotectant, and is an important component of the global geochemical sulfur cycle. This algal osmolyte has not been previously investigated for its role in marine heterotrophic bacterial osmotic stress response. Vibrionaceae are marine species, many of which are halophiles exemplified by V. parahaemolyticus, a species that possesses at least six transporters for the uptake of osmolytes. Here, we demonstrated that V. parahaemolyticus and other Vibrio species can accumulate DMSP as an osmoprotectant and show that several BCCT family transporters uptake DMSP. These studies suggest that DMSP is a significant bacterial osmoprotectant, which may be important for understanding the fate of DMSP in the environment. DMSP is produced and present in coral mucus and Vibrio species form part of the microbial communities associated with them. The function of DMSP in these interactions is unclear, but could be an important driver for these associations allowing Vibrio proliferation. This work suggests that DMSP likely has an important role in heterotrophic bacteria ecology than previously appreciated.

11.
Am J Obstet Gynecol ; 225(6): 634-644, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34023312

RESUMO

In the United States, the common approach to detecting gestational diabetes mellitus is the 2-step protocol recommended by the American College of Obstetricians and Gynecologists. A 50 g, 1-hour glucose challenge at 24 to 28 weeks' gestation is followed by a 100 g, 3-hour oral glucose tolerance test when a screening test threshold is exceeded. Notably, 2 or more elevated values diagnose gestational diabetes mellitus. The 2-step screening test is administered without regard to the time of the last meal, providing convenience by eliminating the requirement for fasting. However, depending upon the cutoff used and population risk factors, approximately 15% to 20% of screened women require the 100 g, 3-hour oral glucose tolerance test. The International Association of Diabetes and Pregnancy Study Groups recommends a protocol of no screening test but rather a diagnostic 75 g, 2-hour oral glucose tolerance test. One or more values above threshold diagnose gestational diabetes mellitus. The 1-step approach requires that women be fasting for the test but does not require a second visit and lasts 2 hours rather than 3. Primarily because of needing only a single elevated value, the 1-step approach identifies 18% to 20% of pregnant women as having gestational diabetes mellitus, 2 to 3 times the rate with the 2-step procedure, but lower than the current United States prediabetes rate of 24% in reproductive aged women. The resources needed for the increase in gestational diabetes mellitus are parallel to the resources needed for the increased prediabetes and diabetes in the nonpregnant population. A recent randomized controlled trial sought to assess the relative population benefits of the above 2 approaches to gestational diabetes mellitus screening and diagnosis. The investigators concluded that there was no significant difference between the 2-step screening protocol and 1-step diagnostic testing protocol in their impact on population adverse short-term pregnancy outcomes. An accompanying editorial concluded that perinatal benefits of the 1-step approach to diagnosing gestational diabetes mellitus "appear to be insufficient to justify the associated patient and healthcare costs of broadening the diagnosis." We raise several concerns about this conclusion. The investigators posited that a 20% improvement in adverse outcomes among the entire pregnancy cohort would be necessary to demonstrate an advantage to the 1-step approach and estimated the sample size based on that presumption, which we believe to be unlikely given the number of cases that would be identified. In addition, 27% of the women randomized to the 1-step protocol underwent 2-step testing; 6% of the study cohort had no testing at all. A subset of women assigned to 2-step testing did not meet the criteria for gestational diabetes mellitus but were treated as such because of elevated fasting plasma glucose levels, presumably contributing to the reduction in adverse outcomes but not to the number of gestational diabetes mellitus identified, increasing the apparent efficacy of the 2-step approach. No consideration was given to long-term benefits for mothers and offspring. All these factors may have contributed to obscuring the benefits of 1-step testing; most importantly, the study was not powered to identify what we understand to be the likely impact of 1-step testing on population health.


Assuntos
Diabetes Gestacional/diagnóstico , Diagnóstico Pré-Natal , Feminino , Humanos , Obstetrícia , Guias de Prática Clínica como Assunto , Gravidez , Sociedades Médicas
12.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32817090

RESUMO

Fluctuations in osmolarity are one of the most prevalent stresses to which bacteria must adapt, both hypo- and hyperosmotic conditions. Most bacteria cope with high osmolarity by accumulating compatible solutes (osmolytes) in the cytoplasm to maintain the turgor pressure of the cell. Vibrio parahaemolyticus, a halophile, utilizes at least six compatible solute transporters for the uptake of osmolytes: two ABC family ProU transporters and four betaine-carnitine-choline transporter (BCCT) family transporters. The full range of compatible solutes transported by this species has yet to be determined. Using an osmolyte phenotypic microarray plate for growth analyses, we expanded the known osmolytes used by V. parahaemolyticus to include N,N-dimethylglycine (DMG), among others. Growth pattern analysis of four triple-bccT mutants, possessing only one functional BCCT, indicated that BccT1 (VP1456), BccT2 (VP1723), and BccT3 (VP1905) transported DMG. BccT1 was unusual in that it could take up both compounds with methylated head groups (glycine betaine [GB], choline, and DMG) and cyclic compounds (ectoine and proline). Bioinformatics analysis identified the four coordinating amino acid residues for GB in the BccT1 protein. In silico modeling analysis demonstrated that GB, DMG, and ectoine docked in the same binding pocket in BccT1. Using site-directed mutagenesis, we showed that a strain with all four residues mutated resulted in the loss of uptake of GB, DMG, and ectoine. We showed that three of the four residues were essential for ectoine uptake, whereas only one of the residues was important for GB uptake. Overall, we have demonstrated that DMG is a highly effective compatible solute for Vibrio species and have elucidated the amino acid residues in BccT1 that are important for the coordination of GB, DMG, and ectoine transport.IMPORTANCEVibrio parahaemolyticus possesses at least six osmolyte transporters, which allow the bacterium to adapt to high-salinity conditions. In this study, we identified several additional osmolytes that were utilized by V. parahaemolyticus We demonstrated that the compound DMG, which is present in the marine environment, was a highly effective osmolyte for Vibrio species. We determined that DMG is transported via BCCT family carriers, which have not been shown previously to take up this compound. BccT1 was a carrier for GB, DMG, and ectoine, and we identified the amino acid residues essential for the coordination of these compounds. The data suggest that for BccT1, GB is more easily accommodated than ectoine in the transporter binding pocket.


Assuntos
Diamino Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sarcosina/análogos & derivados , Vibrio parahaemolyticus/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Betaína/metabolismo , Transporte Biológico , Carnitina/metabolismo , Colina/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Sarcosina/metabolismo , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/genética
13.
Diabetologia ; 63(9): 1783-1795, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32556615

RESUMO

AIMS/HYPOTHESIS: Our study aimed to integrate maternal metabolic and genetic data related to insulin sensitivity during pregnancy to provide novel insights into mechanisms underlying pregnancy-induced insulin resistance. METHODS: Fasting and 1 h serum samples were collected from women in the Hyperglycemia and Adverse Pregnancy Outcome study who underwent an OGTT at ∼28 weeks' gestation. We obtained targeted and non-targeted metabolomics and genome-wide association data from 1600 and 4528 mothers, respectively, in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai); 1412 of the women had both metabolomics and genome-wide association data. Insulin sensitivity was calculated using a modified insulin sensitivity index that included fasting and 1 h glucose and C-peptide levels after a 75 g glucose load. RESULTS: Per-metabolite and network analyses across the four ancestries identified numerous metabolites associated with maternal insulin sensitivity before and 1 h after a glucose load, ranging from amino acids and carbohydrates to fatty acids and lipids. Genome-wide association analyses identified 12 genetic variants in the glucokinase regulatory protein gene locus that were significantly associated with maternal insulin sensitivity, including a common functional missense mutation, rs1260326 (ß = -0.2004, p = 4.67 × 10-12 in a meta-analysis across the four ancestries). This SNP was also significantly associated with multiple fasting and 1 h metabolites during pregnancy, including fasting and 1 h triacylglycerols and 2-hydroxybutyrate and 1 h lactate, 2-ketoleucine/ketoisoleucine and palmitoleic acid. Mediation analysis suggested that 1 h palmitoleic acid contributes, in part, to the association of rs1260326 with maternal insulin sensitivity, explaining 13.7% (95% CI 4.0%, 23.3%) of the total effect. CONCLUSIONS/INTERPRETATION: The present study demonstrates commonalities between metabolites and genetic variants associated with insulin sensitivity in the gravid and non-gravid states and provides insights into mechanisms underlying pregnancy-induced insulin resistance. Graphical abstract.


Assuntos
Resistência à Insulina/genética , Metabolômica , Gravidez/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Povo Asiático , População Negra , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Análise de Mediação , Americanos Mexicanos , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Gravidez/metabolismo , População Branca , Adulto Jovem
14.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169942

RESUMO

Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2 Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria.IMPORTANCEVibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated.


Assuntos
Proteínas de Bactérias/genética , Pressão Osmótica , Proteínas Repressoras/genética , Vibrio parahaemolyticus/fisiologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Filogenia , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Vibrio parahaemolyticus/genética
15.
Diabetologia ; 62(3): 473-484, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30483859

RESUMO

AIMS/HYPOTHESIS: We aimed to determine the association of maternal metabolites with newborn adiposity and hyperinsulinaemia in a multi-ethnic cohort of mother-newborn dyads. METHODS: Targeted and non-targeted metabolomics assays were performed on fasting and 1 h serum samples from a total of 1600 mothers in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai) who participated in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, underwent an OGTT at ~28 weeks gestation and whose newborns had anthropometric measurements at birth. RESULTS: In this observational study, meta-analyses demonstrated significant associations of maternal fasting and 1 h metabolites with birthweight, cord C-peptide and/or sum of skinfolds across ancestry groups. In particular, maternal fasting triacylglycerols were associated with newborn sum of skinfolds. At 1 h, several amino acids, fatty acids and lipid metabolites were associated with one or more newborn outcomes. Network analyses revealed clusters of fasting acylcarnitines, amino acids, lipids and fatty acid metabolites associated with cord C-peptide and sum of skinfolds, with the addition of branched-chain and aromatic amino acids at 1 h. CONCLUSIONS/INTERPRETATION: The maternal metabolome during pregnancy is associated with newborn outcomes. Maternal levels of amino acids, acylcarnitines, lipids and fatty acids and their metabolites during pregnancy relate to fetal growth, adiposity and cord C-peptide, independent of maternal BMI and blood glucose levels.


Assuntos
Peso ao Nascer/fisiologia , Hiperinsulinismo/metabolismo , Metaboloma , Adulto , Peptídeo C/sangue , Feminino , Teste de Tolerância a Glucose , Humanos , Recém-Nascido , Masculino , Metabolômica , Gravidez , Resultado da Gravidez , Triglicerídeos/sangue
16.
Diabetologia ; 62(4): 598-610, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30648193

RESUMO

AIMS/HYPOTHESIS: Maternal type 2 diabetes during pregnancy and gestational diabetes are associated with childhood adiposity; however, associations of lower maternal glucose levels during pregnancy with childhood adiposity, independent of maternal BMI, remain less clear. The objective was to examine associations of maternal glucose levels during pregnancy with childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) cohort. METHODS: The HAPO Study was an observational epidemiological international multi-ethnic investigation that established strong associations of glucose levels during pregnancy with multiple adverse perinatal outcomes. The HAPO Follow-up Study (HAPO FUS) included 4832 children from ten HAPO centres whose mothers had a 75 g OGTT at ~28 weeks gestation 10-14 years earlier, with glucose values blinded to participants and clinical caregivers. The primary outcome was child adiposity, including: (1) being overweight/obese according to sex- and age-specific cut-offs based on the International Obesity Task Force (IOTF) criteria; (2) IOTF-defined obesity only; and (3) measurements >85th percentile for sum of skinfolds, waist circumference and per cent body fat. Primary predictors were maternal OGTT and HbA1c values during pregnancy. RESULTS: Fully adjusted models that included maternal BMI at pregnancy OGTT indicated positive associations between maternal glucose predictors and child adiposity outcomes. For one SD difference in pregnancy glucose and HbA1c measures, ORs for each child adiposity outcome were in the range of 1.05-1.16 for maternal fasting glucose, 1.11-1.19 for 1 h glucose, 1.09-1.21 for 2 h glucose and 1.12-1.21 for HbA1c. Associations were significant, except for associations of maternal fasting glucose with offspring being overweight/obese or having waist circumference >85th percentile. Linearity was confirmed in all adjusted models. Exploratory sex-specific analyses indicated generally consistent associations for boys and girls. CONCLUSIONS/INTERPRETATION: Exposure to higher levels of glucose in utero is independently associated with childhood adiposity, including being overweight/obese, obesity, skinfold thickness, per cent body fat and waist circumference. Glucose levels less than those diagnostic of diabetes are associated with greater childhood adiposity; this may have implications for long-term metabolic health.


Assuntos
Adiposidade , Glicemia/análise , Diabetes Gestacional/sangue , Hiperglicemia/sangue , Obesidade Infantil/fisiopatologia , Gravidez em Diabéticas/sangue , Efeitos Tardios da Exposição Pré-Natal/sangue , Adulto , Índice de Massa Corporal , Criança , Feminino , Seguimentos , Teste de Tolerância a Glucose , Humanos , Masculino , Idade Materna , Sobrepeso , Gravidez , Complicações na Gravidez , Resultado da Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Circunferência da Cintura
17.
J Biol Chem ; 293(49): 19113-19126, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30315110

RESUMO

Nonulosonic acids (NulOs) are a diverse family of α-keto acid carbohydrates present across all branches of life. Bacteria biosynthesize NulOs among which are several related prokaryotic-specific isomers and one of which, N-acetylneuraminic acid (sialic acid), is common among all vertebrates. Bacteria display various NulO carbohydrates on lipopolysaccharide (LPS), and the identities of these molecules tune host-pathogen recognition mechanisms. The opportunistic bacterial pathogen Vibrio vulnificus possesses the genes for NulO biosynthesis; however, the structures and functions of the V. vulnificus NulO glycan are unknown. Using genetic and chemical approaches, we show here that the major NulO produced by a clinical V. vulnificus strain CMCP6 is 5-N-acetyl-7-N-acetyl-d-alanyl-legionaminic acid (Leg5Ac7AcAla). The CMCP6 strain could catabolize modified legionaminic acid, whereas V. vulnificus strain YJ016 produced but did not catabolize a NulO without the N-acetyl-d-alanyl modification. In silico analysis suggested that Leg5Ac7AcAla biosynthesis follows a noncanonical pathway but appears to be present in several bacterial species. Leg5Ac7AcAla contributed to bacterial outer-membrane integrity, as mutant strains unable to produce or incorporate Leg5Ac7AcAla into the LPS have increased membrane permeability, sensitivity to bile salts and antimicrobial peptides, and defects in biofilm formation. Using the crustacean model, Artemia franciscana, we demonstrate that Leg5Ac7AcAla-deficient bacteria have decreased virulence potential compared with WT. Our data indicate that different V. vulnificus strains produce multiple NulOs and that the modified legionaminic acid Leg5Ac7AcAla plays a critical role in the physiology, survivability, and pathogenicity of V. vulnificus CMCP6.


Assuntos
Lipopolissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Animais , Artemia/microbiologia , Biofilmes , Permeabilidade da Membrana Celular , Glicosilação , Humanos , Lipopolissacarídeos/química , Ácidos Siálicos/biossíntese , Ácidos Siálicos/química , Vibrio vulnificus/química , Vibrio vulnificus/metabolismo , Virulência
18.
BMC Genomics ; 20(1): 105, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717668

RESUMO

BACKGROUND: Bacteria are prey for many viruses that hijack the bacterial cell in order to propagate, which can result in bacterial cell lysis and death. Bacteria have developed diverse strategies to counteract virus predation, one of which is the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR associated (Cas) proteins immune defense system. Species within the bacterial family Vibrionaceae are marine organisms that encounter large numbers of phages. Our goal was to determine the significance of CRISPR-Cas systems as a mechanism of defense in this group by investigating their prevalence, phylogenetic distribution, and genome context. RESULTS: Herein, we describe all the CRISPR-Cas system types and their distribution within the family Vibrionaceae. In Vibrio cholerae genomes, we identified multiple variant type I-F systems, which were also present in 41 additional species. In a large number of Vibrio species, we identified a mini type I-F system comprised of tniQcas5cas7cas6f, which was always associated with Tn7-like transposons. The Tn7-like elements, in addition to the CRISPR-Cas system, also contained additional cargo genes such as restriction modification systems and type three secretion systems. A putative hybrid CRISPR-Cas system was identified containing type III-B genes followed by a type I-F cas6f and a type I-F CRISPR that was associated with a prophage in V. cholerae and V. metoecus strains. Our analysis identified CRISPR-Cas types I-C, I-E, I-F, II-B, III-A, III-B, III-D, and the rare type IV systems as well as cas loci architectural variants among 70 species. All systems described contained a CRISPR array that ranged in size from 3 to 179 spacers. The systems identified were present predominantly within mobile genetic elements (MGEs) such as genomic islands, plasmids, and transposon-like elements. Phylogenetic analysis of Cas proteins indicated that the CRISPR-Cas systems were acquired by horizontal gene transfer. CONCLUSIONS: Our data show that CRISPR-Cas systems are phylogenetically widespread but sporadic in occurrence, actively evolving, and present on MGEs within Vibrionaceae.


Assuntos
Proteínas Associadas a CRISPR/genética , Elementos de DNA Transponíveis , Transferência Genética Horizontal , Ilhas Genômicas , Plasmídeos , Vibrio/genética , Proteínas de Bactérias/genética , Filogenia , Análise de Sequência de DNA , Vibrio/metabolismo
19.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519665

RESUMO

To maintain the turgor pressure of the cell under high osmolarity, bacteria accumulate small organic compounds called compatible solutes, either through uptake or biosynthesis. Vibrio parahaemolyticus, a marine halophile and an important human and shellfish pathogen, has to adapt to abiotic stresses such as changing salinity. Vibrio parahaemolyticus contains multiple compatible solute biosynthesis and transporter systems, including the ectABC-asp_ect operon required for de novo ectoine biosynthesis. Ectoine biosynthesis genes are present in many halotolerant bacteria; however, little is known about the mechanism of regulation. We investigated the role of the quorum sensing master regulators OpaR and AphA in ect gene regulation. In an opaR deletion mutant, transcriptional reporter assays demonstrated that ect expression was induced. In an electrophoretic mobility shift assay, we showed that purified OpaR bound to the ect regulatory region indicating direct regulation by OpaR. In an aphA deletion mutant, expression of the ect genes was repressed, and purified AphA bound upstream of the ect genes. These data indicate that AphA is a direct positive regulator. CosR, a Mar-type regulator known to repress ect expression in V. cholerae, was found to repress ect expression in V. parahaemolyticus In addition, we identified a feed-forward loop in which OpaR is a direct activator of cosR, while AphA is an indirect activator of cosR Regulation of the ectoine biosynthesis pathway via this feed-forward loop allows for precise control of ectoine biosynthesis genes throughout the growth cycle to maximize fitness.IMPORTANCE Accumulation of compatible solutes within the cell allows bacteria to maintain intracellular turgor pressure and prevent water efflux. De novo ectoine production is widespread among bacteria, and the ect operon encoding the biosynthetic enzymes is induced by increased salinity. Here, we demonstrate that the quorum sensing regulators AphA and OpaR integrate with the osmotic stress response pathway to control transcription of ectoine biosynthesis genes in V. parahaemolyticus We uncovered a feed-forward loop wherein quorum sensing regulators also control transcription of cosR, which encodes a negative regulator of the ect operon. Moreover, our data suggest that this mechanism may be widespread in Vibrio species.


Assuntos
Fosfatase Ácida/genética , Diamino Aminoácidos/biossíntese , Óperon , Percepção de Quorum , Fatores de Transcrição/genética , Vibrio parahaemolyticus/genética , Proteínas de Bactérias/genética , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Vibrio parahaemolyticus/metabolismo
20.
JAMA ; 320(10): 1005-1016, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208453

RESUMO

Importance: The sequelae of gestational diabetes (GD) by contemporary criteria that diagnose approximately twice as many women as previously used criteria are unclear. Objective: To examine associations of GD with maternal glucose metabolism and childhood adiposity 10 to 14 years' postpartum. Design, Setting, and Participants: The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study established associations of glucose levels during pregnancy with perinatal outcomes and the follow-up study evaluated the long-term outcomes (4697 mothers and 4832 children; study visits occurred between February 13, 2013, and December 13, 2016). Exposures: Gestational diabetes was defined post hoc using criteria from the International Association of Diabetes and Pregnancy Study Groups consisting of 1 or more of the following 75-g oral glucose tolerance test results (fasting plasma glucose ≥92 mg/dL; 1-hour plasma glucose level ≥180 mg/dL; 2-hour plasma glucose level ≥153 mg/dL). Main Outcomes and Measures: Primary maternal outcome: a disorder of glucose metabolism (composite of type 2 diabetes or prediabetes). Primary outcome for children: being overweight or obese; secondary outcomes: obesity, body fat percentage, waist circumference, and sum of skinfolds (>85th percentile for latter 3 outcomes). Results: The analytic cohort included 4697 mothers (mean [SD] age, 41.7 [5.7] years) and 4832 children (mean [SD] age, 11.4 [1.2] years; 51.0% male). The median duration of follow-up was 11.4 years. The criteria for GD were met by 14.3% (672/4697) of mothers overall and by 14.1% (683/4832) of mothers of participating children. Among mothers with GD, 52.2% (346/663) developed a disorder of glucose metabolism vs 20.1% (791/3946) of mothers without GD (odds ratio [OR], 3.44 [95% CI, 2.85 to 4.14]; risk difference [RD], 25.7% [95% CI, 21.7% to 29.7%]). Among children of mothers with GD, 39.5% (269/681) were overweight or obese and 19.1% (130/681) were obese vs 28.6% (1172/4094) and 9.9% (405/4094), respectively, for children of mothers without GD. Adjusted for maternal body mass index during pregnancy, the OR was 1.21 (95% CI, 1.00 to 1.46) for children who were overweight or obese and the RD was 3.7% (95% CI, -0.16% to 7.5%); the OR was 1.58 (95% CI, 1.24 to 2.01) for children who were obese and the RD was 5.0% (95% CI, 2.0% to 8.0%); the OR was 1.35 (95% CI, 1.08 to 1.68) for body fat percentage and the RD was 4.2% (95% CI, 0.9% to 7.4%); the OR was 1.34 (95% CI, 1.08 to 1.67) for waist circumference and the RD was 4.1% (95% CI, 0.8% to 7.3%); and the OR was 1.57 (95% CI, 1.27 to 1.95) for sum of skinfolds and the RD was 6.5% (95% CI, 3.1% to 9.9%). Conclusions and Relevance: Among women with GD identified by contemporary criteria compared with those without it, GD was significantly associated with a higher maternal risk for a disorder of glucose metabolism during long-term follow-up after pregnancy. Among children of mothers with GD vs those without it, the difference in childhood overweight or obesity defined by body mass index cutoffs was not statistically significant; however, additional measures of childhood adiposity may be relevant in interpreting the study findings.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Gestacional , Obesidade Infantil/etiologia , Estado Pré-Diabético/etiologia , Adiposidade , Adolescente , Adulto , Glicemia/análise , Índice de Massa Corporal , Criança , Feminino , Seguimentos , Humanos , Masculino , Gravidez , Circunferência da Cintura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA