RESUMO
We describe a unique new species and genus of agamid lizard from the karstic massifs of Khammouan Province, central Laos. Laodracon carsticola Gen. et sp. nov. is an elusive medium-sized lizard (maximum snout-vent length 101 mm) specifically adapted to life on limestone rocks and pinnacles. To assess the phylogenetic position of the new genus amongst other agamids, we generated DNA sequences from two mitochondrial gene fragments (16S rRNA and ND2) and three nuclear loci ( BDNF, RAG1 and c-mos), with a final alignment comprising 7 418 base pairs for 64 agamid species. Phylogenetic analyses unambiguously place the new genus in the mainland Asia subfamily Draconinae, where it forms a clade sister to the genus Diploderma from East Asia and the northern part of Southeast Asia. Morphologically, the new genus is distinguished from all other genera in Draconinae by possessing a notably swollen tail base with enlarged scales on its dorsal and ventral surfaces. Our work provides further evidence that limestone regions of Indochina represent unique "arks of biodiversity" and harbor numerous relict lineages. To date, Laodracon carsticola Gen. et sp. nov. is known from only two adult male specimens and its distribution seems to be restricted to a narrow limestone massif on the border of Khammouan and Bolikhamxai provinces of Laos. Additional studies are required to understand its life history, distribution, and conservation status.
Assuntos
Lagartos , Masculino , Animais , Laos , Filogenia , RNA Ribossômico 16S , Lagartos/anatomia & histologia , Serpentes/genética , Carbonato de CálcioRESUMO
Slug-eating snakes of the subfamily Pareinae are an insufficiently studied group of snakes specialized in feeding on terrestrial mollusks. Currently Pareinae encompass three genera with 34 species distributed across the Oriental biogeographic region. Despite the recent significant progress in understanding of Pareinae diversity, the subfamily remains taxonomically challenging. Here we present an updated phylogeny of the subfamily with a comprehensive taxon sampling including 30 currently recognized Pareinae species and several previously unknown candidate species and lineages. Phylogenetic analyses of mtDNA and nuDNA data supported the monophyly of the three genera Asthenodipsas, Aplopeltura, and Pareas. Within both Asthenodipsas and Pareas our analyses recovered deep differentiation with each genus being represented by two morphologically diagnosable clades, which we treat as subgenera. We further apply an integrative taxonomic approach, including analyses of molecular and morphological data, along with examination of available type materials, to address the longstanding taxonomic questions of the subgenus Pareas, and reveal the high level of hidden diversity of these snakes in Indochina. We restrict the distribution of P. carinatus to southern Southeast Asia, and recognize two subspecies within it, including one new subspecies proposed for the populations from Thailand and Myanmar. We further revalidate P. berdmorei, synonymize P. menglaensis with P. berdmorei, and recognize three subspecies within this taxon, including the new subspecies erected for the populations from Laos and Vietnam. Furthermore, we describe two new species of Pareas from Vietnam: one belonging to the P. carinatus group from southern Vietnam, and a new member of the P. nuchalis group from the central Vietnam. We provide new data on P. temporalis, and report on a significant range extension for P. nuchalis. Our phylogeny, along with molecular clock and ancestral area analyses, reveal a complex diversification pattern of Pareinae involving a high degree of sympatry of widespread and endemic species. Our analyses support the "upstream" colonization hypothesis and, thus, the Pareinae appears to have originated in Sundaland during the middle Eocene and then colonized mainland Asia in early Oligocene. Sundaland and Eastern Indochina appear to have played the key roles as the centers of Pareinae diversification. Our results reveal that both vicariance and dispersal are responsible for current distribution patterns of Pareinae, with tectonic movements, orogeny and paleoclimatic shifts being the probable drivers of diversification. Our study brings the total number of Pareidae species to 41 and further highlights the importance of comprehensive taxonomic revisions not only for the better understanding of biodiversity and its evolution, but also for the elaboration of adequate conservation actions.