Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 597(7877): 516-521, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471291

RESUMO

Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Secas , Agricultura Florestal/legislação & jurisprudência , Floresta Úmida , Incêndios Florestais/estatística & dados numéricos , Animais , Brasil , Mudança Climática/estatística & dados numéricos , Florestas , Mapeamento Geográfico , Plantas , Árvores/fisiologia , Vertebrados
2.
Glob Chang Biol ; 28(22): 6807-6822, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073184

RESUMO

The Brazilian Cerrado is one of the most biodiverse savannas in the world, yet 46% of its original cover has been cleared to make way for crops and pastures. These extensive land-use transitions (LUTs) are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperature (LST), and ultimately reducing precipitation. Here, we quantify the impacts of LUTs on ET and LST in the Cerrado by combining MODIS satellite data with annual land use and land cover maps from 2006 to 2019. We performed regression analyses to quantify the effects of six common LUTs on ET and LST across the entire gradient of Cerrado landscapes. Results indicate that clearing forests for cropland or pasture increased average LST by ~3.5°C and reduced mean annual ET by 44% and 39%, respectively. Transitions from woody savannas to cropland or pasture increased average LST by 1.9°C and reduced mean annual ET by 27% and 21%, respectively. Converting native grasslands to cropland or pasture increased average LST by 0.9 and 0.6°C, respectively. Conversely, grassland-to-pasture transitions increased mean annual ET by 15%. To date, land changes have caused a 10% reduction in water recycled to the atmosphere annually and a 0.9°C increase in average LST across the biome, compared to the historic baseline under native vegetation. Global climate changes from increased atmospheric greenhouse gas concentrations will only exacerbate these effects. Considering potential future scenarios, we found that abandoning deforestation control policies or allowing legal deforestation to continue (at least 28.4 Mha) would further reduce yearly ET (by -9% and -3%, respectively) and increase average LST (by +0.7 and +0.3°C, respectively) by 2050. In contrast, policies encouraging zero deforestation and restoration of the 5.2 Mha of illegally deforested areas would partially offset the warming and drying impacts of land-use change.


O Cerrado brasileiro é uma das savanas mais biodiversas do mundo. Apesar disso, 46% da sua cobertura original foi desmatada para dar lugar a cultivos agrícolas e pastos. Estas extensas transições de uso do solo (LUT) têm o potencial de influenciar o clima regional, reduzindo a evapotranspiração (ET), aumentando a temperatura da superfície terrestre (LST) e por fim reduzindo a precipitação. O objetivo deste estudo foi quantificar os impactos de LUTs sobre ET e LST no Cerrado, combinando dados do satélite MODIS com mapas anuais de uso e cobertura do solo de 2006-2019. Foram realizadas análises de regressão para quantificar os efeitos de seis LUTs usuais sobre ET e LST, ao longo de todo o gradiente de paisagens do Cerrado. Os resultados indicaram que a retirada de florestas para dar lugar à agricultura ou pastagem aumentou a LST média em ~3.5°C e reduziu a ET média anual em 44% e 39%, respectivamente. Transições de formações savânicas para agricultura ou pastagem aumentaram a LST média em 1.9°C e reduziram a ET média anual em 27% e 21%, respectivamente. A conversão de campos nativos para agricultura ou pastagem aumentou a LST média em 0.9 e 0.6°C, respectivamente. Em contrapartida, transições de formações campestres nativas para pastagens aumentaram a ET média anual em 15%. Até o momento, as mudanças de uso do solo causaram redução de 10% da água reciclada para a atmosfera anualmente e aumento de 0.9°C da LST média ao longo do bioma, em comparação com a linha de base histórica sob vegetação nativa. As mudanças climáticas globais decorrentes do aumento das concentrações atmosféricas de gases do efeito estufa irão exacerbar esses efeitos. Considerando potenciais cenários futuros, observou-se que o abandono das políticas de controle do desmatamento ou o avanço do desmatamento legal (ao menos 28.4 Mha) reduziriam a ET anual (em −9% e −3%, respectivamente) e aumentariam a LST média (em +0.7 e +0.3ºC, respectivamente) até 2050. Por outro lado, políticas que promovam desmatamento zero e restauração dos 5.2 Mha de áreas ilegalmente desmatadas compensariam parte dos impactos de aquecimento e seca causados por alterações de uso do solo.


Assuntos
Ecossistema , Gases de Efeito Estufa , Agricultura , Conservação dos Recursos Naturais , Florestas , Água
3.
New Phytol ; 230(1): 139-154, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33507548

RESUMO

Non-structural carbon (NSC) storage (i.e. starch, soluble sugras and lipids) in tree stems play important roles in metabolism and growth. Their spatial distribution in wood may explain species-specific differences in carbon storage dynamics, growth and survival. However, quantitative information on the spatial distribution of starch and lipids in wood is sparse due to methodological limitations. Here we assessed differences in wood NSC and lipid storage between tropical tree species with different growth and mortality rates and contrasting functional types. We measured starch and soluble sugars in wood cores up to 4 cm deep into the stem using standard chemical quantification methods and histological slices stained with Lugol's iodine. We also detected neutral lipids using histological slices stained with Oil-Red-O. The histological method allowed us to group individuals into two categories according to their starch storage strategy: fiber-storing trees and parenchyma-storing trees. The first group had a bigger starch pool, slower growth and lower mortality rates than the second group. Lipid storage was found in wood parenchyma in five species and was related to low mortality rates. The quantification of the spatial distribution of starch and lipids in wood improves our understanding of NSC dynamics in trees and reveals additional dimensions of tree growth and survival strategies.


Assuntos
Amido , Árvores , Carboidratos , Carbono , Madeira
4.
Ecol Lett ; 23(1): 99-106, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642170

RESUMO

Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire-driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait-enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.


En los bosques tropicales de la Amazonia, los incendios de sotobosque representan una amenaza que se está acelerando. Durante la sequía, pueden afectar un área mayor que la deforestación misma. Estos incendios pueden matan árboles a tasas que varían desde <10 hasta cerca de 90% dependiendo de la intensidad del fuego, la historia de perturbaciones forestales y los rasgos funcionales de los árboles. En este estudio, examinamos la variación en el grosor de la corteza en la Amazonía. La corteza puede proteger los árboles de los incendios, pero normalmente se supone que es uniformemente delgada en los bosques tropicales. Aquí, mostramos que el grosor de la corteza varía bastante, con una corteza más gruesa en los bosques secos y más delgada en los bosques húmedos. También, mostramos que cortezas más delgadas resultan en tasas de mortalidad más altas en bosques más húmedos. En total, estimamos que los incendios en el sotobosque de la Amazonía han añadido entre 0,67 y 5,86 gigatoneladas de CO2 atmosférico entre 2001-2010. Los modelos globales de vegetación que predicen los efectos de los incendios sobre el reciclaje de carbono en los bosques tropicales deberían incluir explícitamente la variación en el grosor de la corteza.


Os incêndios rasteiros de sub-bosque representam uma ameaça cada vez maior às florestas tropicais da Amazônia. Durante secas, eles podem afetar áreas maiores do que àquelas desmatadas. Esses incêndios matam árvores a taxas que variam de <10 a c. 90%, dependendo da intensidade do fogo, da história de distúrbios florestais e das características funcionais das árvores. Neste estudo, examinamos a variação na espessura da casca na Amazônia. A casca pode proteger árvores do fogo, mas geralmente é considerada uniformemente fina para diversas florestas tropicais. Aqui, mostramos que a espessura da casca varia, com cascas mais espessas ocorrendo em florestas secas e mais finas ocorrendo em florestas mais úmidas. Mostramos também que a casca mais fina resulta em taxas de mortalidade mais altas em florestas úmidas. No total, estimamos que os incêndios de sub-bosque adicionaram entre 0,67 e 5,86 gigatoneladas de CO2 atmosférico entre 2001-2010. Os modelos globais de vegetação devem incluir explicitamente a variação na espessura da casca ao prever os efeitos do fogo no ciclo do carbono de florestas tropicais.


Assuntos
Florestas , Árvores , Ciclo do Carbono , Casca de Planta , Sensibilidade e Especificidade
5.
Glob Chang Biol ; 25(9): 2855-2868, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237398

RESUMO

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.


Assuntos
Dióxido de Carbono , Incêndios , Brasil , Ecossistema , Florestas , Árvores
6.
Glob Chang Biol ; 24(8): 3629-3641, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748988

RESUMO

Fire at the dry southern margin of the Amazon rainforest could have major consequences for regional soil carbon (C) storage and ecosystem carbon dioxide (CO2 ) emissions, but relatively little information exists about impacts of fire on soil C cycling within this sensitive ecotone. We measured CO2 effluxes from different soil components (ground surface litter, roots, mycorrhizae, soil organic matter) at a large-scale burn experiment designed to simulate a severe but realistic potential future scenario for the region (Fire plot) in Mato Grosso, Brazil, over 1 year, and compared these measurements to replicated data from a nearby, unmodified Control plot. After four burns over 5 years, soil CO2 efflux (Rs ) was ~5.5 t C ha-1  year-1 lower on the Fire plot compared to the Control. Most of the Fire plot Rs reduction was specifically due to lower ground surface litter and root respiration. Mycorrhizal respiration on both plots was around ~20% of Rs . Soil surface temperature appeared to be more important than moisture as a driver of seasonal patterns in Rs at the site. Regular fire events decreased the seasonality of Rs at the study site, due to apparent differences in environmental sensitivities among biotic and abiotic soil components. These findings may contribute toward improved predictions of the amount and temporal pattern of C emissions across the large areas of tropical forest facing increasing fire disturbances associated with climate change and human activities.


Assuntos
Dióxido de Carbono/química , Incêndios , Floresta Úmida , Solo/química , Brasil , Carbono , Mudança Climática , Monitoramento Ambiental , Atividades Humanas , Chuva , Fatores de Tempo , Árvores
7.
Oecologia ; 187(4): 933-940, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29955996

RESUMO

Episodic multi-year droughts fundamentally alter the dynamics, functioning, and structure of Amazonian forests. However, the capacity of individual plant species to withstand intense drought regimes remains unclear. Here, we evaluated ecophysiological responses from a forest community where we sampled 83 woody plant species during 5 years of experimental drought (throughfall exclusion) in an eastern Amazonian terra firme forest. Overall, the experimental drought resulted in shifts of some, but not all, leaf traits related to photosynthetic carbon uptake and intrinsic water-use efficiency. Leaf δ13C values increased by 2-3‰ within the canopy, consistent with increased diffusional constraints on photosynthesis. Decreased leaf C:N ratios were also observed, consistent with lower investments in leaf structure. However, no statistically significant treatment effects on leaf nitrogen content were observed, consistent with a lack of acclimation in photosynthetic capacity or increased production of nitrogen-based secondary metabolites. The results of our study provide evidence of robust acclimation potential to drought intensification in the diverse flora of an Amazonian forest community. The results reveals considerable ability of several species to respond to intense drought and challenge commonly held perspectives that this flora has attained limited adaptive plasticity because of a long evolutionary history in a favorable and stable climate.


Assuntos
Secas , Árvores , Aclimatação , Florestas , Fotossíntese , Folhas de Planta
8.
Glob Chang Biol ; 22(7): 2516-25, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26750627

RESUMO

Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years.


Assuntos
Ciclo do Carbono , Incêndios , Florestas , Carbono/análise , Solo/química , América do Sul , Árvores/crescimento & desenvolvimento , Clima Tropical
9.
Bioscience ; 65(9): 882-892, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955085

RESUMO

Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE) experiments can offer mechanistic insight into the response to extended or severe drought and can be used to help improve model-based simulations, which are currently inadequate. Only eight TFE experiments have been reported for tropical rain forests. We examine them, synthesizing key results and focusing on two processes that have shown threshold behavior in response to drought: (1) tree mortality and (2) the efflux of carbon dioxdie from soil, soil respiration. We show that: (a) where tested using large-scale field experiments, tropical rain forest tree mortality is resistant to long-term soil moisture deficit up to a threshold of 50% of the water that is extractable by vegetation from the soil, but high mortality occurs beyond this value, with evidence from one site of increased autotrophic respiration, and (b) soil respiration reaches its peak value in response to soil moisture at significantly higher soil moisture content for clay-rich soils than for clay-poor soils. This first synthesis of tropical TFE experiments offers the hypothesis that low soil moisture-related thresholds for key stress responses in soil and vegetation may prove to be widely applicable across tropical rain forests despite the diversity of these forests.

10.
Ecol Appl ; 25(6): 1493-505, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26552259

RESUMO

Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.


Assuntos
Conservação dos Recursos Naturais , Secas , Incêndios , Florestas , Modelos Teóricos , Fatores de Tempo
11.
New Phytol ; 200(2): 350-365, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23844931

RESUMO

Considerable uncertainty surrounds the fate of Amazon rainforests in response to climate change. Here, carbon (C) flux predictions of five terrestrial biosphere models (Community Land Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated BIosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1 (JULES) and Simple Biosphere model version 3 (SiB3)) and a hydrodynamic terrestrial ecosystem model (the Soil-Plant-Atmosphere (SPA) model) were evaluated against measurements from two large-scale Amazon drought experiments. Model predictions agreed with the observed C fluxes in the control plots of both experiments, but poorly replicated the responses to the drought treatments. Most notably, with the exception of ED2, the models predicted negligible reductions in aboveground biomass in response to the drought treatments, which was in contrast to an observed c. 20% reduction at both sites. For ED2, the timing of the decline in aboveground biomass was accurate, but the magnitude was too high for one site and too low for the other. Three key findings indicate critical areas for future research and model development. First, the models predicted declines in autotrophic respiration under prolonged drought in contrast to measured increases at one of the sites. Secondly, models lacking a phenological response to drought introduced bias in the sensitivity of canopy productivity and respiration to drought. Thirdly, the phenomenological water-stress functions used by the terrestrial biosphere models to represent the effects of soil moisture on stomatal conductance yielded unrealistic diurnal and seasonal responses to drought.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Modelos Biológicos , Árvores/fisiologia , Água/fisiologia , Biomassa , Brasil , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Desidratação , Secas , Ecossistema , Oxigênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Solo , Árvores/crescimento & desenvolvimento , Clima Tropical , Madeira
12.
Oecologia ; 172(1): 219-29, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23053239

RESUMO

Surface fires burn extensive areas of tropical forests each year, altering resource availability, biotic interactions, and, ultimately, plant diversity. In transitional forest between the Brazilian cerrado (savanna) and high stature Amazon forest, we took advantage of a long-term fire experiment to establish a factorial study of the interactions between fire, nutrient availability, and herbivory on early plant regeneration. Overall, five annual burns reduced the number and diversity of regenerating stems. Community composition changed substantially after repeated fires, and species common in the cerrado became more abundant. The number of recruits and their diversity were reduced in the burned area, but burned plots closed to herbivores with nitrogen additions had a 14 % increase in recruitment. Diversity of recruits also increased up to 50 % in burned plots when nitrogen was added. Phosphorus additions were related to an increase in species evenness in burned plots open to herbivores. Herbivory reduced seedling survival overall and increased diversity in burned plots when nutrients were added. This last result supports our hypothesis that positive relationships between herbivore presence and diversity would be strongest in treatments that favor herbivory--in this case herbivory was higher in burned plots which were initially lower in diversity. Regenerating seedlings in less diverse plots were likely more apparent to herbivores, enabling increased herbivory and a stronger signal of negative density dependence. In contrast, herbivores generally decreased diversity in more species rich unburned plots. Although this study documents complex interactions between repeated burns, nutrients, and herbivory, it is clear that fire initiates a shift in the factors that are most important in determining the diversity and number of recruits. This change may have long-lasting effects as the forest progresses through succession.


Assuntos
Biodiversidade , Incêndios , Herbivoria , Insetos/fisiologia , Desenvolvimento Vegetal , Animais , Brasil , Densidade Demográfica , Dinâmica Populacional
13.
Proc Natl Acad Sci U S A ; 107(33): 14685-90, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679201

RESUMO

Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.


Assuntos
Ecossistema , Estações do Ano , Árvores/crescimento & desenvolvimento , Clima Tropical , Geografia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Chuva , Luz Solar , Água/farmacologia
14.
Nat Commun ; 13(1): 1964, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413947

RESUMO

Biophysical effects from deforestation have the potential to amplify carbon losses but are often neglected in carbon accounting systems. Here we use both Earth system model simulations and satellite-derived estimates of aboveground biomass to assess losses of vegetation carbon caused by the influence of tropical deforestation on regional climate across different continents. In the Amazon, warming and drying arising from deforestation result in an additional 5.1 ± 3.7% loss of aboveground biomass. Biophysical effects also amplify carbon losses in the Congo (3.8 ± 2.5%) but do not lead to significant additional carbon losses in tropical Asia due to its high levels of annual mean precipitation. These findings indicate that tropical forests may be undervalued in carbon accounting systems that neglect climate feedbacks from surface biophysical changes and that the positive carbon-climate feedback from deforestation-driven climate change is higher than the feedback originating from fossil fuel emissions.


Assuntos
Carbono/metabolismo , Mudança Climática , Florestas , Clima Tropical , Biomassa , Conservação dos Recursos Naturais , Árvores
15.
Sci Adv ; 8(30): eabd2713, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905176

RESUMO

Exceptional fire activity in 2019 sparked concern about Amazon forest conservation. However, the inability to rapidly separate satellite fire detections by fire type hampered fire suppression and assessment of ecosystem and air quality impacts. Here, we describe the development of a near-real-time approach for tracking contributions from deforestation, forest, agricultural, and savanna fires to burned area and emissions and apply the approach to the 2019 fire season in South America. Across the southern Amazon, 19,700 deforestation fire events accounted for 39% of all satellite active fire detections and the majority of fire carbon emissions (63%; 69 Tg C). Multiday fires accounted for 81% of burned area and 92% of carbon emissions from the Amazon, with many forest fires burning uncontrolled for weeks. Most fire detections from deforestation fires were correctly identified within 2 days (67%), highlighting the potential to improve situational awareness and management outcomes during fire emergencies.

16.
Science ; 351(6276): 972-6, 2016 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-26917771

RESUMO

In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.


Assuntos
Mudança Climática , Florestas , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Clima Tropical , Demografia , Luz , Estações do Ano
17.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120152, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610163

RESUMO

The papers in this special issue address a major challenge facing our society: feeding a population that is simultaneously growing and increasing its per capita food consumption, while preventing widespread ecological and social impoverishment in the tropics. By focusing mostly on the Amazon's most dynamic agricultural frontier, Mato Grosso, they collectively clarify some key elements of achieving more sustainable agriculture. First, stakeholders in commodity-driven agricultural Amazonian frontiers respond rapidly to multiple forces, including global markets, international pressures for sustainably produced commodities and national-, state- and municipality-level policies. These forces can encourage or discourage deforestation rate changes within a short time-period. Second, agricultural frontiers are linked systems, land-use change is linked with regional climate, forest fires, water quality and stream discharge, which in turn are linked with the well-being of human populations. Thus, land-use practices at the farm level have ecological and social repercussions far removed from it. Third, policies need to consider the full socio-economic system to identify the efficacy and consequences of possible land management strategies. Monitoring to devise suitable management approaches depends not only on tracking land-use change, but also on monitoring the regional ecological and social consequences. Mato Grosso's achievements in reducing deforestation are impressive, yet they are also fragile. The ecological and social consequences and the successes and failures of management in this region can serve as an example of possible trajectories for other commodity-driven tropical agricultural frontiers.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/economia , Ecologia/métodos , Brasil , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Ecossistema , Política Ambiental , Água Doce , Fatores Socioeconômicos , Árvores/fisiologia
18.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120157, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610167

RESUMO

Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4-13.2 stems m(-2)), but after 6 years, increased mortality and decreased regeneration--primarily of seedlings--led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred--almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes.


Assuntos
Incêndios , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Biota , Brasil , Secas , Germinação , Caules de Planta/crescimento & desenvolvimento , Estações do Ano , Sementes/crescimento & desenvolvimento
19.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120153, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610164

RESUMO

Large-scale cattle and crop production are the primary drivers of deforestation in the Amazon today. Such land-use changes can degrade stream ecosystems by reducing connectivity, changing light and nutrient inputs, and altering the quantity and quality of streamwater. This study integrates field data from 12 catchments with satellite-derived information for the 176,000 km(2) upper Xingu watershed (Mato Grosso, Brazil). We quantify recent land-use transitions and evaluate the influence of land management on streamwater temperature, an important determinant of habitat quality in small streams. By 2010, over 40 per cent of catchments outside protected areas were dominated (greater than 60% of area) by agriculture, with an estimated 10,000 impoundments in the upper Xingu. Streams in pasture and soya bean watersheds were significantly warmer than those in forested watersheds, with average daily maxima over 4°C higher in pasture and 3°C higher in soya bean. The upstream density of impoundments and riparian forest cover accounted for 43 per cent of the variation in temperature. Scaling up, our model suggests that management practices associated with recent agricultural expansion may have already increased headwater stream temperatures across the Xingu. Although increased temperatures could negatively impact stream biota, conserving or restoring riparian buffers could reduce predicted warming by as much as fivefold.


Assuntos
Agricultura/métodos , Rios , Temperatura , Brasil , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Chuva , Tecnologia de Sensoriamento Remoto , Estações do Ano , Glycine max , Água
20.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120427, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610179

RESUMO

Changes in climate and land use that interact synergistically to increase fire frequencies and intensities in tropical regions are predicted to drive forests to new grass-dominated stable states. To reveal the mechanisms for such a transition, we established 50 ha plots in a transitional forest in the southwestern Brazilian Amazon to different fire treatments (unburned, burned annually (B1yr) or at 3-year intervals (B3yr)). Over an 8-year period since the commencement of these treatments, we documented: (i) the annual rate of pasture and native grass invasion in response to increasing fire frequency; (ii) the establishment of Brachiaria decumbens (an African C4 grass) as a function of decreasing canopy cover and (iii) the effects of grass fine fuel on fire intensity. Grasses invaded approximately 200 m from the edge into the interiors of burned plots (B1yr: 4.31 ha; B3yr: 4.96 ha) but invaded less than 10 m into the unburned plot (0.33 ha). The probability of B. decumbens establishment increased with seed availability and decreased with leaf area index. Fine fuel loads along the forest edge were more than three times higher in grass-dominated areas, which resulted in especially intense fires. Our results indicate that synergies between fires and invasive C4 grasses jeopardize the future of tropical forests.


Assuntos
Brachiaria/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Incêndios , Espécies Introduzidas , Árvores/crescimento & desenvolvimento , Clima Tropical , Brasil , Ecossistema , Luz , Modelos Logísticos , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA