Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Chemistry ; 25(63): 14349-14357, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31392799

RESUMO

The synthesis of TBA-DASA-POM-DASA, the first photoactive covalent hybrid polyoxometalate (POM) incorporating a donor-acceptor Stenhouse adduct (DASA) reverse photochrome, is presented. It has been evidenced that in solution the equilibrium between the colorless cyclopentenone and the highly colored triene conformers is strongly dependent not only on the nature of the solvent but also the countercations, allowing to tune its optical properties. This complex has been further associated to photochromic spironaphtoxazine cations, resulting in a material which can be activated by two distinct optical stimuli. Moreover, when combined with N-methyldiethanolamine, TBA-DASA-POM-DASA constitutes a performing photoinitiating system for polyethylene glycol diacrylate polymerization and under visible light irradiation, a promising result in a domain scarcely developed in POM chemistry.

2.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052469

RESUMO

Berberine is a bioactive isoquinoline alkaloid derived from many plants. Although berberine has been shown to inhibit growth and induce apoptosis of several tumor cell lines, its poor absorption and moderate activity hamper its full therapeutic potential. Here, we describe the synthesis of a series of 9-O-substituted berberine derivatives with improved antiproliferative and apoptosis-inducing activities. An analysis of novel berberine derivatives by EPR spectroscopy confirmed their similar photosensitivity and analogous behavior upon UVA irradiation as berberine, supporting their potential to generate ROS. Improved antitumor activity of novel berberine derivatives was revealed by MTT assay, by flow cytometry and by detection of apoptotic DNA fragmentation and caspase-3 activation, respectively. We showed that novel berberine derivatives are potent inhibitors of growth of HeLa and HL-60 tumor cell lines with IC50 values ranging from 0.7 to 16.7 µM for HL-60 cells and 36 to >200 µM for HeLa cells after 48 h treatment. Further cell cycle analysis showed that the observed inhibition of growth of HL-60 cells treated with berberine derivatives was due to arresting these cells in the G2/M and S phases. Most strikingly, we found that berberine derivative 3 (9-(3-bromopropoxy)-10-methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquino[3,2-a] isoquinolin-7-ylium bromide) possesses 30-fold superior antiproliferative activity with an IC50 value of 0.7 µM and 6-fold higher apoptosis-inducing activity in HL-60 leukemia cells compared to berberine. Therefore, further studies are merited of the antitumor activity in leukemia cells of this berberine derivative.


Assuntos
Antineoplásicos/síntese química , Berberina/análogos & derivados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células HeLa , Humanos
3.
Molecules ; 24(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909480

RESUMO

Doxycycline (DOXY) is an antibiotic routinely prescribed in human and veterinary medicine for antibacterial treatment, but it has also numerous side effects that include oxidative stress, inflammation, cancer or hypoxia-induced injury. Endogenously produced hydrogen sulfide (H2S) and polysulfides affect similar biological processes, in which reactive oxygen species (ROS) play a role. Herein, we have studied the interaction of DOXY with H2S (Na2S) or polysulfides (Na2S2, Na2S3 and Na2S4) to gain insights into the biological effects of intermediates/products that they generate. To achieve this, UV-VIS, EPR spectroscopy and plasmid DNA (pDNA) cleavage assay were employed. Na2S or Na2S2 in a mixture with DOXY, depending on ratio, concentration and time, displayed bell-shape kinetics in terms of producing/scavenging superoxide and hydroxyl radicals and decomposing hydrogen peroxide. In contrast, the effects of individual compounds (except for Na2S2) were hardly observable. In addition, DOXY, as well as oxytetracycline and tetracycline, interacting with Na2S or other studied polysulfides reduced the •cPTIO radical. Tetracyclines induced pDNA cleavage in the presence of Na2S. Interestingly, they inhibited pDNA cleavage induced by other polysulfides. In conclusion, sulfide and polysulfides interacting with tetracyclines produce/scavenge free radicals, indicating a consequence for free radical biology under conditions of ROS production and tetracyclines administration.


Assuntos
Clivagem do DNA/efeitos dos fármacos , Doxiciclina/química , Doxiciclina/farmacologia , Radical Hidroxila/química , Sulfetos/química , Sulfetos/farmacologia , Superóxidos/química , Interações Medicamentosas , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Análise Espectral
4.
Nitric Oxide ; 76: 136-151, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951200

RESUMO

Exogenous and endogenously produced sulfide derivatives, such as H2S/HS-/S2-, polysulfides and products of the H2S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O2-) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O2-, we found that a polysulfide (Na2S4) and S/GSNO were potent scavengers of O2- and cPTIO radicals compared to H2S (Na2S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H2O2 and produced OH in the following order: S/GSNO > Na2S4 ≥ Na2S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H2O2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H2O2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H2O2; and (iv) Na2S4 modulated intracellular calcium in A87MG cells, which depended on the order of Na2S4/H2O2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time- and concentration-dependent radical production/scavenging properties and their interactions with O2-, OH and H2O2. The results imply a direct involvement of sulfide derivatives in O2- and H2O2/OH free radical pathways modulating antioxidant/toxic biological processes.


Assuntos
Antioxidantes/farmacologia , Cromanos/farmacologia , Peróxido de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Radical Hidroxila/metabolismo , S-Nitrosoglutationa/farmacologia , Sulfetos/farmacologia , Superóxidos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Radical Hidroxila/química
5.
Molecules ; 23(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561827

RESUMO

X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.


Assuntos
Cobre/química , Espectrofotometria Ultravioleta/métodos , Tiossemicarbazonas/química , Raios Ultravioleta , Simulação por Computador , Cristalização , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Soluções , Marcadores de Spin , Tiossemicarbazonas/síntese química
6.
Nitric Oxide ; 46: 123-30, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25529482

RESUMO

The chemical interaction of sodium sulfide (Na2S) with the NO-donor S-nitrosoglutathione (GSNO) has been described to generate new reaction products, including polysulfides and nitrosopersulfide (SSNO(-)) via intermediacy of thionitrous acid (HSNO). The aim of the present work was to investigate the vascular effects of the longer-lived products of the Sulfide/GSNO interaction. Here we show that the products of this reaction relax precontracted isolated rings of rat thoracic aorta and mesenteric artery (but to a lesser degree rat uterus) with a >2-fold potency compared with the starting material, GSNO (50 nM), whereas Na2S and polysulfides have little effect at 1-5 µM. The onset of vasorelaxation of the reaction products was 7-10 times faster in aorta and mesenteric arteries compared with GSNO. Relaxation to GSNO (100-500 nM) was blocked by an inhibitor of soluble guanylyl cyclase, ODQ (0.1 and 10 µM), and by the NO scavenger cPTIO (100 µM), but less affected by prior acidification (pH 2-4), and unaffected by N-acetylcysteine (1 mM) or methemoglobin (20 µM heme). By contrast, relaxation to the Sulfide/GSNO reaction products (100-500 nM based on the starting material) was inhibited to a lesser extent by ODQ, only slightly decreased by cPTIO, more markedly inhibited by methemoglobin and N-acetylcysteine, and abolished by acidification before addition to the organ bath. The reaction mixture was found to generate NO as detected by EPR spectroscopy using N-(dithiocarboxy)-N-methyl-D-glucamine (MGD2)-Fe(2+) as spin trap. In conclusion, the Sufide/GSNO reaction products are faster and more pronounced vasorelaxants than GSNO itself. We conclude that in addition to NO formation from SSNO(-), reaction products other than polysulfides may give rise to nitroxyl (HNO) and be involved in the pronounced relaxation induced by the Sulfide/GSNO cross-talk.


Assuntos
S-Nitrosoglutationa/metabolismo , Sulfetos/metabolismo , Vasodilatadores/metabolismo , Vasodilatadores/farmacologia , Animais , Aorta/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Masculino , Ratos , Ratos Wistar , S-Nitrosoglutationa/química , Sulfetos/química , Contração Uterina/efeitos dos fármacos , Vasodilatadores/química
7.
Org Biomol Chem ; 12(25): 4491-502, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24849262

RESUMO

Two comparative sets of mono-/dinitroxyl amides were designed and prepared. The novel TEMPO and/or PROXYL derivatives were fully characterised and their spin, redox and antimicrobial properties were determined. Cyclic voltammetry revealed (quasi)reversible redox behavior for most of the studied radicals. Moreover, the electron-withdrawing substituents increased the oxidation potential of nitroxides in comparison to electron-donating groups. While EPR spectra of monoradicals featured the typical three-line signal, the spectra of biradicals showed more complex splitting patterns. The in vitro biological assay revealed that unlike pyrrolidinyl derivatives, the piperidinyl nitroxides significantly inhibited the growth of Staphylococcus sp.


Assuntos
Amidas/química , Amidas/síntese química , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Fenômenos Químicos , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/síntese química , Amidas/farmacologia , Anti-Infecciosos/química , Catálise , Simulação por Computador , Óxidos N-Cíclicos/síntese química , Óxidos N-Cíclicos/química , Técnicas Eletroquímicas , Eletrodos , Espectroscopia de Ressonância de Spin Eletrônica , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Óxidos de Nitrogênio/farmacologia , Oxirredução , Staphylococcus/efeitos dos fármacos , Difração de Raios X
8.
Magn Reson Chem ; 52(1-2): 22-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24194257

RESUMO

4-Oxoquinoline derivatives (quinolones) represent heterocyclic compounds with a variety of biological activities, along with interesting chemical reactivity. The quinolone derivatives possessing secondary amino hydrogen at the nitrogen of the enaminone system are oxidized with 3-chloroperbenzoic acid to nitroxide radicals in the primary step while maintaining their 4-pyridone ring. Otherwise, N-methyl substituted quinolones also form nitroxide radicals coupled with the opening of the 4-pyridone ring in a gradual oxidation of the methyl group via the nitrone-nitroxide spin-adduct cycle. This was confirmed in an analogous oxidation using N,N-dimethylaniline as a model compound. N-Ethyl quinolones in contrast to its N-methyl analog form only one nitroxide radical without a further degradation.


Assuntos
Compostos de Anilina/química , Clorobenzoatos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/química , Quinolonas/química , Oxirredução
9.
Molecules ; 19(11): 17279-304, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25353381

RESUMO

The radical intermediates formed upon UVA irradiation of titanium dioxide suspensions in aqueous and non-aqueous environments were investigated applying the EPR spin trapping technique. The results showed that the generation of reactive species and their consecutive reactions are influenced by the solvent properties (e.g., polarity, solubility of molecular oxygen, rate constant for the reaction of hydroxyl radicals with the solvent). The formation of hydroxyl radicals, evidenced as the corresponding spin-adducts, dominated in the irradiated TiO2 aqueous suspensions. The addition of 17O-enriched water caused changes in the EPR spectra reflecting the interaction of an unpaired electron with the 17O nucleus. The photoexcitation of TiO2 in non-aqueous solvents (dimethylsulfoxide, acetonitrile, methanol and ethanol) in the presence of 5,5-dimethyl-1-pyrroline N-oxide spin trap displayed a stabilization of the superoxide radical anions generated via electron transfer reaction to molecular oxygen, and various oxygen- and carbon-centered radicals from the solvents were generated. The character and origin of the carbon-centered spin-adducts was confirmed using nitroso spin trapping agents.


Assuntos
Radical Hidroxila/química , Superóxidos/química , Titânio/química , Acetonitrilas/química , Carbono/química , Dimetil Sulfóxido/química , Elétrons , Etanol/química , Metanol/química , Óxidos/química , Oxigênio/química , Solubilidade , Solventes/química , Detecção de Spin/métodos
10.
Molecules ; 19(8): 12078-98, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25120058

RESUMO

10-Ethyl-7-oxo-7,10-dihydropyrido[2,3-f]quinoxaline derivatives, synthesized as promising biologically/photobiologically active compounds were characterized by UV/vis, FT-IR and fluorescent spectroscopy. Photoinduced processes of these derivatives were studied by EPR spectroscopy, monitoring in situ the generation of reactive intermediates upon UVA (λmax=365 nm) irradiation. The formation of reactive oxygen species and further oxygen- and carbon-centered radical intermediates was detected and possible reaction routes were suggested. To quantify the investigated processes, the quantum yields of the superoxide radical anion spin-adduct and 4-oxo-2,2,6,6-tetramethylpiperidine N-oxyl generation were determined, reflecting the activation of molecular oxygen by the excited state of the quinoxaline derivative.


Assuntos
Quinoxalinas/química , Espécies Reativas de Oxigênio/química , Superóxidos/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Marcadores de Spin , Detecção de Spin , Raios Ultravioleta
11.
J Org Chem ; 78(13): 6558-69, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23763462

RESUMO

A comparison set of mono-/biradical TEMPO derivatives was prepared, novel compounds were fully characterized, and their physicochemical properties were determined. Cyclic voltammetry revealed reversible redox behavior for all studied nitroxides. Moreover, the electron-withdrawing substituents increased the oxidation potential of the respective nitroxides in comparison to electron-donating groups. While EPR spectra of monoradicals in dichloromethane at 295 K reveal the expected three-line signal, spectra of biradicals show more complex features. DFT and MP2 calculations indicate that the EPR splitting pattern of dinitroxide 7 could be explained by its interactions with solvent molecules. In the solid state, mononitroxides 4 and 5 behave as a Heisenberg antiferromagnetic chain, whereas dinitroxides 6-8 are almost isolated paramagnetic diradicals coupled in an antiferromagnetic manner.


Assuntos
Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/síntese química , Técnicas Eletroquímicas , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Campos Magnéticos , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
12.
J Phys Chem A ; 116(40): 9919-27, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22974362

RESUMO

The redox behavior of the series of 7-substituted 6-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-h]quinolines and 8-substituted 9-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-f]quinolines with R(7), R(8) = H, COOC(2)H(5), COOCH(3), COOH, COCH(3), and CN has been studied by in situ EPR and EPR/UV-vis spectroelectrochemistry in dimethylsulfoxide. All selenadiazoloquinolones undergo a one-electron reduction process to form the corresponding radical anions. Their stability strongly depends on substitution at the nitrogen atom of the 4-pyridone ring. The primary generated radical anions from N-ethyl-substituted quinolones are stable, whereas for the quinolones with imino hydrogen, the initial radical anions rapidly dimerize to produce unusually stable sigma-dimer (σ-dimer) dianions. These are reversibly oxidized to the initial compounds at potentials considerably less negative than the original reduction process in the back voltammetric scan. The dimer dianion can be further reduced to the stable paramagnetic dimer radical trianion in the region of the second reversible reduction step. The proposed complex reaction mechanism was confirmed by in situ EPR/UV-vis cyclovoltammetric experiments. The site of the dimerization in the σ-dimer and the mapping of the unpaired spin density both for radical anions and σ-dimer radical trianions with unusual unpaired spin distribution have been assigned by means of density functional theory calculations.


Assuntos
Compostos Organosselênicos/química , Teoria Quântica , Quinolonas/química , Ânions/química , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Estrutura Molecular , Espectrofotometria Ultravioleta
13.
J Mater Chem B ; 10(5): 779-794, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040839

RESUMO

To date, there is still a lack of definite knowledge regarding the toxicity of Cu(OH)2 nanoparticles towards bacteria. This study was aimed at shedding light on the role played by released cupric ions in the toxicity of nanoparticles. To address this issue, the bactericidal activity of Cu(OH)2 was at first evaluated in sterile water, a medium in which particles are not soluble. In parallel, an isovalent substitution of cupric ions by Mg2+ was attempted in the crystal structure of Cu(OH)2 nanoparticles to increase their solubility and determine the impact on the bactericidal activity. For the first time, mixed Cu1-xMgx(OH)2 nanorods (x ≤ 0.1) of about 15 nm in diameter and a few hundred nanometers in length were successfully prepared by a simple co-precipitation at room temperature in mixed alkaline (NaOH/Na2CO3) medium. For E. coli, 100% reduction of one million CFU per mL (6 log10) occurs after only 180 min on contact with both Cu(OH)2 and Cu0.9Mg0.1(OH)2 nanorods. The entire initial inoculum of S. aureus is also killed by Cu(OH)2 after 180 min (100% or 6 log10 reduction), while 0.01% of these bacteria stay alive on contact with Cu0.9Mg0.1(OH)2 (99.99% or 4 log10 reduction). The bactericidal performances of Cu(OH)2 and the magnesium-substituted counterparts (i.e. Cu1-xMgx(OH)2) are not linked to cupric ions they release in water since their mass concentrations after 180 min are much lower than minimal concentrations inhibiting the growth of E. coli and S. aureus. Finally, an EPR spin trapping study reveals how these nanorods kill bacteria in water: only the presence of hydrogen peroxide, a by-product of the normal metabolism of oxygen in aerobic bacteria, allows the Cu(OH)2 and its magnesium-substituted counterparts to produce a lethal amount of free radicals, the majority of which are the highly toxic HO˙.


Assuntos
Radical Hidroxila , Nanotubos , Antibacterianos/farmacologia , Cobre/química , Escherichia coli/metabolismo , Radical Hidroxila/metabolismo , Íons , Magnésio , Staphylococcus aureus/metabolismo , Água
14.
Dalton Trans ; 51(21): 8411-8424, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593297

RESUMO

Both nanometer-sized CuO and MgO particles exhibit bactericidal activities against Staphylococcus aureus and Escherichia coli, two bacteria causing healthcare-associated infections. The solid solution Cu1-xMgxO is potentially interesting for biomedical applications as one of the compositions could have a much higher bactericidal activity than the parent CuO and MgO oxides considered separately. But, to date, no Vegard's law proves the real existence of such a solid solution. This study was aimed at shedding light on the solubility of Mg2+ ions in CuO nanoparticles and its impact on the free oxygen radicals they produce, the quantity of which determines their bactericidal performance. The solid solution Cu1-xMgxO does exist and particles were synthesized as nanorods of 50-60 nm length by thermally decomposing at 400 °C the single source precursors Cu1-xMgx(OH)2. Vegard's laws exist only in the compositional range 0 ≤ x ≤ 0.1, due to the low capacity of the distorted NaCl-type structure to accommodate regular coordination [MgO6] octahedra. Only neutron diffraction allowed the detection of the small amount of MgO nanoparticles present as impurity in a 10 g sample beyond the solubility limit of x = 0.1. In this series, CuO nanorods remain the most active against E. coli and S. aureus with reduction in viability of 99.998% and 98.7% after 180 min in water, respectively. Our synthesis route has significantly increased the activity of pure CuO nanoparticles beyond the values reported so far, especially against E. coli. The bactericidal performances of CuO and the magnesium-substituted counterparts (i.e. Cu1-xMgxO) are not linked to cupric ions they release in water since their mass concentrations after 180 min are much lower than minimal concentrations inhibiting the growth of E. coli and S. aureus. These CuO nanorods kill bacteria in water because they produce a large quantity of free oxygen radicals in the presence of H2O2 only, the majority of which are highly toxic HO˙ radicals. Mg2+ ions have a detrimental effect on this production, thus explaining the lowest bactericidal performance of Cu1-xMgxO nanorods. Definitive knowledge of the toxicity of Cu1-xMgxO nanoparticles towards bacteria in water is now available.


Assuntos
Nanotubos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Escherichia coli , Peróxido de Hidrogênio , Íons , Óxido de Magnésio/farmacologia , Difração de Nêutrons , Espécies Reativas de Oxigênio , Solubilidade , Água
15.
Magn Reson Chem ; 49(4): 168-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21246625

RESUMO

Newly synthesized derivatives of 6-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-h]quinoline variously substituted at position 7 (R = H, COOH, COCH(3), CN, COOC(2)H(5) and COOCH(3)) are established in strongly alkaline aqueous solutions (0.1 M NaOH; pH ∼ 13) as N(9)-deprotonated structures, but in less alkaline solutions (0.001 M NaOH; pH ∼ 11) the N(9)-protonated oxo tautomeric forms dominate. Upon their anodic oxidation in alkaline solutions, the selenadiazole ring is replaced, forming instead the paramagnetic species analogous to the ortho semiquinone radical anions as monitored by in situ EPR spectroscopy. The quantum chemical calculations for two representative selenadiazoloquinolones (R = H and COOH) and their anodic oxidation products presented are in agreement with experiments.


Assuntos
Compostos Organometálicos/síntese química , Quinolinas/química , Selênio/química , Hidróxido de Sódio/química , Eletrodos , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Estrutura Molecular , Compostos Organometálicos/química , Oxirredução , Teoria Quântica , Soluções
16.
Polymers (Basel) ; 13(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203069

RESUMO

Two new photopolymerizable vinyl (2-(allyloxy) 1,4-naphthoquinone, HNQA) and epoxy (2-(oxiran-2yl methoxy) 1,4-naphthoquinone, HNQE) photoinitiators derived from lawsone were designed in this paper. These new photoinitiators can be used as one-component photoinitiating systems for the free-radical photopolymerization of acrylate bio-based monomer without the addition of any co-initiators. As highlighted by the electron paramagnetic resonance (EPR) spin-trapping results, the formation of carbon-centered radicals from an intermolecular H abstraction reaction was evidenced and can act as initiating species. Interestingly, the introduction of iodonium salt (Iod) used as a co-initiator has led to (1) the cationic photopolymerization of epoxy monomer with high final conversions and (2) an increase of the rates of free-radical polymerization of the acrylate bio-based monomer; we also demonstrated the concomitant thiol-ene reaction and cationic photopolymerizations of a limonene 1,2 epoxide/thiol blend mixture with the HNQA/Iod photoinitiating system.

17.
Antioxidants (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439533

RESUMO

Superoxide radical anion (O2•-) and its derivatives regulate numerous physiological and pathological processes, which are extensively studied. The aim of our work was to utilize KO2 as a source of O2•- and the electron paramagnetic resonance (EPR) spin trapping 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO) technique for the preparation of •BMPO-OOH and/or •BMPO-OH radicals in water solution without DMSO. The method distinguishes the interactions of various compounds with •BMPO-OOH and/or •BMPO-OH radicals over time. Here, we show that the addition of a buffered BMPO-HCl mixture to powdered KO2 formed relatively stable •BMPO-OOH and •BMPO-OH radicals and H2O2, where the •BMPO-OOH/OH ratio depended on the pH. At a final pH of ~6.5-8.0, the concentration of •BMPO-OOH radicals was ≥20 times higher than that of •BMPO-OH, whereas at pH 9.0-10.0, the •BMPO-OH radicals prevailed. The •BMPO-OOH/OH radicals effectively cleaved the plasmid DNA. H2S decreased the concentration of •BMPO-OOH/OH radicals, whereas the selenium derivatives 1-methyl-4-(3-(phenylselanyl) propyl) piperazine and 1-methyl-4-(4-(phenylselanyl) butyl) piperazine increased the proportion of •BMPO-OH over the •BMPO-OOH radicals. In conclusion, the presented approach of using KO2 as a source of O2•-/H2O2 and EPR spin trap BMPO for the preparation of •BMPO-OOH/OH radicals in a physiological solution could be useful to study the biological effects of radicals and their interactions with compounds.

18.
Mater Sci Eng C Mater Biol Appl ; 123: 111997, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812617

RESUMO

Copper substitution together with nano-structuring are applied with the aim to increase the bactericidal performances of the rocksalt-type MgO oxide. The partial substitution of magnesium ions with Cu2+ has been successfully achieved in both micrometer- and nanometer-sized particles of MgO up to 20 mol% in increments of 5 mol%. Microstructural analyses using the Integral Breadth method revealed that the thermal decomposition of the single source precursor Mg1-xCux(OH)2-2y(CO3)y.zH2O at 400 °C creates numerous defects in 10-20 nm-sized particles of Mg1-xCuxO thus obtained. These defects make the surface of nanoparticles highly reactive towards the sorption of water molecules, to the extent that the cubic cell a parameter in as-prepared Mg1-xCuxO expands by +0.24% as soon as the nanoparticles are exposed to ambient air (60% RH). The hydration of Mg1-xCuxO particles in liquid water is based on a conventional dissolution-precipitation mechanism. Particles of a few microns in size dissolve all the more slowly the higher the copper content and only Mg(OH)2 starts precipitating after 3 h. In contrast, the dissolution of all 10-20 nm-sized Mg1-xCuxO particles is complete over a 3 h period and water suspension only contains 4-12 nm-sized Mg1-xCux(OH)2 particles after 3 h. Thereby, the bactericidal activity reported for water suspension of Mg1-xCuxO nanoparticles depends on the speed at which these nanoparticles dissolve and Mg1-xCux(OH)2 nanoparticles precipitate in the first 3 h. Only 10 mol% of cupric ions in MgO nanoparticles are sufficient to kill both E. coli and S. aureus with a bactericidal kinetics faster and reductions in viability at 3 h (6.5 Log10 and 2.7 Log10, respectively) higher than the conventional antibacterial agent CuO (4.7 Log10 and 2 Log10 under the same conditions). EPR spin trapping study reveals that "hydroxylated" Mg0.9Cu0.1O as well as Mg0.9Cu0.1(OH)2 nanoparticles produce more spin-adducts with highly toxic hydroxyl radicals than their copper-free counterparts. The rapid mass adsorption of Mg0.9Cu0.1(OH)2 nanoparticles onto the cell envelopes following their precipitation together with their ability to produce Reactive Oxygen Species are responsible for the exceptionally high bactericidal activity measured in the course of the hydroxylation of Mg0.9Cu0.1O nanoparticles.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Escherichia coli , Magnésio , Óxidos , Staphylococcus aureus
19.
Chem Commun (Camb) ; 57(71): 8973-8976, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486621

RESUMO

Azacalixphyrins are unique aromatic macrocycles featuring strong absorption from the visible to the near-infrared (NIR) spectral ranges. This work demonstrates through EPR spin-trapping experiments that the N-alkyl tetrasubstituted azacalixphyrin (ACP) can lead to the formation of carbon-centered radicals initiating for the free-radical photopolymerization (FRP) of bio-based acrylate monomer upon the irradiation of several light emitting diodes, which emissions range from 455 to 660 nm. Compared to other previously reported systems, the tremendous advantage of the ACP photoinitiating system is its ability to promote photopolymerization on its own, avoiding the introduction of co-initiators. A new potential application of this promising photoinitiator is highlighted through the fabrication of well-defined microstructures under NIR laser diode irradiation at λ = 800 nm.

20.
Chempluschem ; 86(3): 396-405, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33645915

RESUMO

A series of di-/trinitroxide esters and amides featuring PROXYL and/or TEMPO radicals connected with alicyclic bridges were prepared in 61-92 % yields and their properties were analysed by using multiple experimental techniques. The examination of EPR spectra of radicals in organic solvents augmented with DFT calculations brought valuable information on the conformational dynamics and spin exchange mechanisms. Cyclic voltammetry investigations revealed (quasi)reversible electrochemical behaviour of studied nitroxides with their half-wave potentials ranging from -51 to -17 mV. SQUID measurements of selected radicals revealed that the magnetism of di- and trinitroxides is significantly different, since antiferromagnetic coupling in biradicals is notably larger than in triradicals. The single-crystal X-ray analysis of selected biradicals revealed the existence of 3D supramolecular networks of molecules linked through hydrogen-bonding interactions. These polynitroxide radicals can serve as promising bridging or chelating ligands in the synthesis of transition-metal-based molecular magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA