Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 95(6): 2877-85, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7769129

RESUMO

Two classes of receptors for IgG, Fc gamma RIIa and Fc gamma RIIIb, both of which exist in two allelic forms, are expressed on human neutrophils. Neutrophils from normal donors, homozygous for the different allelic phenotypes of Fc gamma RIIIb, have significantly different levels of Fc gamma receptor-mediated phagocytosis of IgG-opsonized erythrocytes (EA). However, the observation that Fc gamma RIIIb mediates phagocytosis of specific mAb-targeted erythrocytes poorly suggests that this receptor may influence EA internalization by Fc gamma RIIa in an allele-sensitive fashion. Donors homozygous for the NA1 allele of Fc gamma RIIIb showed greater activation of Fc gamma RIIa after Fc gamma RIIIb cross-linking than donors homozygous for the NA2 allele of Fc gamma RIIIb. This increase in receptor-specific internalization reflects both an increase in ligand binding by Fc gamma RIIa and an increase in internalization efficiency of targets bound. Activation of Fc gamma RIIa by Fc gamma RIIIb is transferable by supernatants from activated cells and is blocked by inhibitors of reactive oxygen species and the H2O2-myeloperoxidase-chloride system and by serine protease inhibitors. Thus, cross-linking of Fc gamma RIIIb, which leads to neutrophil degranulation and the generation of reactive oxygen intermediates, in turn alters Fc gamma RIIa avidity and efficiency. These oxidant-mediated changes in Fc gamma RIIa function provide a novel mechanism for receptors to collaborate in both an autocrine and paracrine fashion. The allele sensitivity of these effects suggests that Fc gamma receptor polymorphisms may be inherited disease susceptibility factors in host defense against infection and in the development of autoimmunity.


Assuntos
Neutrófilos/fisiologia , Receptores de IgG/fisiologia , Adulto , Alelos , Degranulação Celular , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Oxirredução , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Agregação de Receptores , Receptores de IgG/classificação , Serina Endopeptidases/metabolismo , Transdução de Sinais
2.
J Clin Invest ; 89(4): 1274-81, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1532589

RESUMO

Two different allelic polymorphisms among the isoforms of human Fc gamma receptors have been defined: the low-responder (LR)-high-responder (HR) polymorphism of huFc gamma RIIA expressed on both PMN and monocytes and the NA1-NA2 polymorphism of the neutrophil Fc gamma RIII (huFc gamma RIIIB). To address the issues of whether the LR-HR polymorphism has a significant impact on Fc gamma R-mediated functions in human blood cells and whether any differences in LR-HR might be related to higher Fc gamma R-mediated phagocytosis in NA1 donors, we examined Fc gamma R-specific binding and internalization by donors homozygous for the two huFc gamma RIIA alleles. PMN from LR homozygotes showed consistently higher levels of internalization of erythrocytes opsonized with pooled human IgG (E-hIgG). The absence of an LR-HR phagocytic difference with erythrocytes opsonized with either anti-Fc gamma RIIA MAb IV.3 or rabbit IgG, as opposed to E-hIgG, suggested that the Fc piece of the opsonin might be important for this LR-HR difference. Accordingly, we studied HR and LR homozygotes with human IgG subclass-specific probes. Both PMN (independent of huFc gamma RIIIB phenotype) and monocytes from LR donors bound and internalized erythrocytes coated with human IgG2 (E-hIgG2) efficiently, whereas phagocytes from HR donors did so poorly. E-hIgG2 internalization was completely abrogated by blockade of the ligand binding site of huFc gamma RIIA with IV.3 Fab, indicating that huFc gamma RIIA is essential for the handling of hIgG2 and that the mechanism of the LR-HR phagocytic difference is at the level of ligand binding to huFc gamma RIIA. In contrast, the difference in internalization of E-hIgG between NA1 and NA2 homozygous donors was independent of the huFc gamma RIIA phenotype and did not manifest differences in ligand binding. Thus, the two known allelic polymorphisms of human Fc gamma R have distinct and independent mechanisms for altering receptor function, which may influence host defense and immune complex handling.


Assuntos
Alelos , Antígenos de Diferenciação/genética , Imunoglobulina G/metabolismo , Fagócitos/fisiologia , Polimorfismo Genético , Receptores Fc/genética , Adulto , Homozigoto , Humanos , Pessoa de Meia-Idade , Neutrófilos/fisiologia , Fagocitose , Receptores de IgG
3.
J Immunol ; 146(3): 997-1004, 1991 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-1824853

RESUMO

Human polymorphonuclear leukocytes (PMN) express two classes of Fc gamma R: Fc gamma RII the 42-kDa receptor with a traditional membrane spanning domain and cytoplasmic tail and Fc gamma RIIIPMN the 50- to 80-kDa receptor with a glycosyl-phatidylinositol membrane anchor expressed on PMN. To explore the capacity of Fc gamma RIIIPMN to generate intracellular signals, we have analyzed the ability of Fab and F(ab')2 anti-Fc gamma R mAb to induce actin filament assembly, a prerequisite for motile behaviors. Multivalent ligation of Fc gamma RIIIPMN, independent of Fc gamma RII, results in an increase in F-actin content that is [Ca2+]i dependent. Multivalent ligation of Fc gamma RII also initiates actin polymerization but uses a [Ca2+]i-independent initial pathway. In addition to providing a mechanism for Fc gamma RIIIPMN triggered effector functions, the increase in F-actin and [Ca2+]i generated by Fc gamma RIIIPMN ligation also serves as a "priming" signal to modify PMN responses to other stimuli. Experiments using erythrocytes specifically coated with anti-Fc gamma RII Fab demonstrate that cross-linking of Fc gamma RIIIPMN with anti-Fc gamma RIII F(ab')2 enhances phagocytosis mediated by Fc gamma RII. Thus, Fc gamma RIIIPMN, a glycosyl-phosphatidylinositol anchored protein, may contribute directly to an intracellular program of actin assembly that may trigger and prime neutrophil effector functions.


Assuntos
Actinas/metabolismo , Antígenos de Diferenciação/fisiologia , Imunoglobulina G/metabolismo , Neutrófilos/metabolismo , Fagocitose , Receptores Fc/fisiologia , Actinas/análise , Complexo Antígeno-Anticorpo/fisiologia , Cálcio/fisiologia , Humanos , Polímeros/metabolismo , Receptores de IgG , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA