Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geophys Res Lett ; 48(19)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34776556

RESUMO

The warm Gulf Stream sea surface temperatures strongly impact the evolution of winter clouds behind atmospheric cold fronts. Such cloud evolution remains challenging to model. The Gulf Stream is too wide within the ERA5 and MERRA2 reanalyses, affecting the turbulent surface fluxes. Known problems within the ERA5 boundary layer (too-dry and too-cool with too strong westerlies), ascertained primarily from ACTIVATE 2020 campaign aircraft dropsondes and secondarily from older buoy measurements, reinforce surface flux biases. In contrast, MERRA2 winter surface winds and air-sea temperature/humidity differences are slightly too weak, producing surface fluxes that are too low. Reanalyses boundary layer heights in the strongly forced winter cold-air-outbreak regime are realistic, whereas late-summer quiescent stable boundary layers are too shallow. Nevertheless, the reanalysis biases are small, and reanalyses adequately support their use for initializing higher-resolution cloud process modeling studies of cold-air outbreaks.

2.
Geophys Res Lett ; 46(21): 12598-12607, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33173247

RESUMO

Marine low-level clouds continue to be poorly simulated in models despite many studies and field experiments devoted to their improvement. Here we focus on the spatial errors in the cloud decks in the Department of Energy Earth system model (the Energy Exascale Earth System Model [E3SM]) relative to the satellite climatology by calculating centroid distances, area ratios, and overlap ratios. Since model dynamics is better simulated than clouds, these errors are attributed primarily to the model physics. To gain additional insight, we performed a sensitivity run in which model winds were nudged to those of reanalysis. This results in a large change (but not necessarily an improvement) in the simulated cloud decks. These differences between simulations are mainly due to the interactions between model dynamics and physics. These results suggest that both model physics (widely recognized) and its interaction with dynamics (less recognized) are important to model improvement in simulating these low-level clouds.

3.
Atmos Chem Phys ; 21(13): 10499-10526, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34377145

RESUMO

Cloud drop number concentrations (N d) over the western North Atlantic Ocean (WNAO) are generally highest during the winter (DJF) and lowest in summer (JJA), in contrast to aerosol proxy variables (aerosol optical depth, aerosol index, surface aerosol mass concentrations, surface cloud condensation nuclei (CCN) concentrations) that generally peak in spring (MAM) and JJA with minima in DJF. Using aircraft, satellite remote sensing, ground-based in situ measurement data, and reanalysis data, we characterize factors explaining the divergent seasonal cycles and furthermore probe into factors influencing N d on seasonal timescales. The results can be summarized well by features most pronounced in DJF, including features associated with cold-air outbreak (CAO) conditions such as enhanced values of CAO index, planetary boundary layer height (PBLH), low-level liquid cloud fraction, and cloud-top height, in addition to winds aligned with continental outflow. Data sorted into high- and low-N d days in each season, especially in DJF, revealed that all of these conditions were enhanced on the high-N d days, including reduced sea level pressure and stronger wind speeds. Although aerosols may be more abundant in MAM and JJA, the conditions needed to activate those particles into cloud droplets are weaker than in colder months, which is demonstrated by calculations of the strongest (weakest) aerosol indirect effects in DJF (JJA) based on comparing N d to perturbations in four different aerosol proxy variables (total and sulfate aerosol optical depth, aerosol index, surface mass concentration of sulfate). We used three machine learning models and up to 14 input variables to infer about most influential factors related to N d for DJF and JJA, with the best performance obtained with gradient-boosted regression tree (GBRT) analysis. The model results indicated that cloud fraction was the most important input variable, followed by some combination (depending on season) of CAO index and surface mass concentrations of sulfate and organic carbon. Future work is recommended to further understand aspects uncovered here such as impacts of free tropospheric aerosol entrainment on clouds, degree of boundary layer coupling, wet scavenging, and giant CCN effects on aerosol-N d relationships, updraft velocity, and vertical structure of cloud properties such as adiabaticity that impact the satellite estimation of N d.

4.
Atmos Chem Phys ; 20(8): 4637-4665, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33193752

RESUMO

This study provides a detailed characterization of stratocumulus clearings off the US West Coast using remote sensing, reanalysis, and airborne in situ data. Ten years (2009-2018) of Geostationary Operational Environmental Satellite (GOES) imagery data are used to quantify the monthly frequency, growth rate of total area (GRArea), and dimensional characteristics of 306 total clearings. While there is interannual variability, the summer (winter) months experienced the most (least) clearing events, with the lowest cloud fractions being in close proximity to coastal topographical features along the central to northern coast of California, including especially just south of Cape Mendocino and Cape Blanco. From 09:00 to 18:00 (PST), the median length, width, and area of clearings increased from 680 to 1231, 193 to 443, and ~ 67000 to ~ 250000km2, respectively. Machine learning was applied to identify the most influential factors governing the GRArea of clearings between 09:00 and 12:00PST, which is the time frame of most rapid clearing expansion. The results from gradient-boosted regression tree (GBRT) modeling revealed that air temperature at 850 hPa (T 850), specific humidity at 950 hPa (q 950), sea surface temperature (SST), and anomaly in mean sea level pressure (MSLPanom) were probably most impactful in enhancing GRArea using two scoring schemes. Clearings have distinguishing features such as an enhanced Pacific high shifted more towards northern California, offshore air that is warm and dry, stronger coastal surface winds, enhanced lower-tropospheric static stability, and increased subsidence. Although clearings are associated obviously with reduced cloud fraction where they reside, the domain-averaged cloud albedo was actually slightly higher on clearing days as compared to non-clearing days. To validate speculated processes linking environmental parameters to clearing growth rates based on satellite and reanalysis data, airborne data from three case flights were examined. Measurements were compared on both sides of the clear-cloudy border of clearings at multiple altitudes in the boundary layer and free troposphere, with results helping to support links suggested by this study's model simulations. More specifically, airborne data revealed the influence of the coastal low-level jet and extensive horizontal shear at cloud-relevant altitudes that promoted mixing between clear and cloudy air. Vertical profile data provide support for warm and dry air in the free troposphere, additionally promoting expansion of clearings. Airborne data revealed greater evidence of sea salt in clouds on clearing days, pointing to a possible role for, or simply the presence of, this aerosol type in clearing areas coincident with stronger coastal winds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA