Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 280: 111755, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334629

RESUMO

The Defense Coastal/Estuarine Research Program (DCERP) was a 10-year multi-investigator project funded by the Department of Defense to improve understanding of ecosystem processes and their interactions with natural and anthropogenic stressors at the Marine Corps Base Camp Lejeune (MCBCL) located in coastal North Carolina. The project was aimed at facilitating ecosystem-based management (EBM) at the MCBCL and other coastal military installations. Because of its scope, interdisciplinary character, and duration, DCERP embodied many of the opportunities and challenges associated with EBM, including the need for explicit goals, system models, long-term perspectives, systems complexity, change inevitability, consideration of humans as ecosystem components, and program adaptability and accountability. We describe key elements of this program, its contributions to coastal EBM, and its relevance as an exemplar of EBM.


Assuntos
Ecossistema , Militares , Biodiversidade , Carbono , Mudança Climática , Conservação dos Recursos Naturais , Humanos , North Carolina , Água
2.
Estuaries Coast ; 44: 2041-2055, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35340553

RESUMO

Nitrogen pollution is one of the primary threats to coastal water quality globally, and governmental regulations and marine policy are increasingly requiring nitrogen remediation in management programs. Traditional mitigation strategies (e.g., advanced wastewater treatment) are not always enough to meet reduction goals. Novel opportunities for additional nitrogen reduction are needed to develop a portfolio of long-term solutions. Increasingly, in situ nitrogen reduction practices are providing a complementary management approach to the traditional source control and treatment, including recognition of potential contributions of coastal bivalve shellfish. While policy interest in bivalves has focused primarily on nitrogen removal via biomass harvest, bivalves can also contribute to nitrogen removal by enhancing denitrification (the microbial driven process of bioavailable nitrogen transformation to di-nitrogen gas). Recent evidence suggests that nitrogen removed via enhanced denitrification may eclipse nitrogen removal through biomass harvest alone. With a few exceptions, bivalve-enhanced denitrification has yet to be incorporated into water quality policy. Here, we focus on oysters in considering how this issue may be addressed. We discuss policy options to support expansion of oyster-mediated denitrification, describe the practical considerations for incorporation into nitrogen management, and summarize the current state of the field in accounting for denitrification in oyster habitats. When considered against alternative nitrogen control strategies, we argue that enhanced denitrification associated with oysters should be included in a full suite of nitrogen removal strategies, but with the recognition that denitrification associated with oyster habitats will not alone solve our excess nitrogen loading problem.

3.
Estuaries Coast ; 39(2): 311-332, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27721675

RESUMO

Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

4.
PLoS One ; 8(12): e84140, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391904

RESUMO

Hypoxia in Chesapeake Bay has substantially increased in recent decades, with detrimental effects on macrobenthic production; the production of these fauna link energy transfer from primary consumers to epibenthic and demersal predators. As such, the development of accurate predictive models that determine the impact of hypoxia on macrobenthic production is important. A continuous-time, biomass-based model was developed for the lower Rappahannock River, a Bay tributary prone to seasonal hypoxia. Phytoplankton, zooplankton, and macrobenthic state variables were modeled, with a focus on quantitatively constraining the effect of hypoxia on macrobenthic biomass. This was accomplished through regression with Z': a sigmoidal function between macrobenthic biomass and dissolved oxygen concentration, derived using macrobenthic data collected from the Rappahannock River during the summers of 2007 and 2008, and applied to compute hypoxia-induced mortality as a rate process. The model was verified using independent monitoring data collected by the Chesapeake Bay Program. Simulations showed that macrobenthic biomass was strongly linked to dissolved oxygen concentrations, with fluctuations in biomass related to the duration and severity of hypoxia. Our model demonstrated that hypoxia negatively affected macrobenthic biomass, as longer durations of hypoxia and greater hypoxic severity resulted in an increasing loss in biomass. This exercise represents an important contribution to modeling anthropogenically impacted coastal ecosystems, by providing an empirically constrained relationship between hypoxia and macrobenthic biomass, and applying that empirical relationship in a mechanistic model to quantify the effect of the severity, duration, and frequency of hypoxia on benthic biomass dynamics.


Assuntos
Metabolismo Energético/fisiologia , Invertebrados/fisiologia , Modelos Biológicos , Rios , Estações do Ano , Anaerobiose , Animais , Biomassa , Simulação por Computador , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA