Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(11): 115002, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154407

RESUMO

Measurements were made of the return current instability growth rate, demonstrating its concurrence with nonlocal transport. Thomson scattering was used to measure a maximum growth rate of 5.1×10^{9} Hz, which was 3 times less than classical Spitzer-Härm theory predicts. The measured plasma conditions indicate the heat flux was nonlocal, and Vlasov-Fokker-Planck simulations that account for nonlocality reproduce the measured growth rates. Furthermore, the threshold for the return current instability was measured (δ_{T}=0.017±0.002) to be in good agreement with previous theoretical models.

2.
Phys Rev Lett ; 124(21): 215001, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530650

RESUMO

We present the first local, quantitative measurements of ion current filamentation and magnetic field amplification in interpenetrating plasmas, characterizing the dynamics of the ion Weibel instability. The interaction of a pair of laser-generated, counterpropagating, collisionless, supersonic plasma flows is probed using optical Thomson scattering (TS). Analysis of the TS ion-feature revealed anticorrelated modulations in the density of the two ion streams at the spatial scale of the ion skin depth c/ω_{pi}=120 µm, and a correlated modulation in the plasma current. The inferred current profile implies a magnetic field amplitude ∼30±6 T, corresponding to ∼1% of the flow kinetic energy, indicating that magnetic trapping is the dominant saturation mechanism.

3.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39248616

RESUMO

A rapid calibration system is under development for the Near Backscatter Imager (NBI) in use at the National Ignition Facility (NIF). NBI is an optical diagnostic that quantifies the stimulated Brillouin and Raman backscatter produced by NIF's targets. Specifically, NBI measures the light that does not fall directly back into the laser aperture, which is measured by the Full Aperture Backscatter System (FABS). When working in tandem with FABS, NBI allows for the full characterization of backscattered light. This informs Hohlraum laser coupling, optical damage, and laser-plasma interaction models. NBI uses a large Spectralon plate covered by a protective glass layer and is mounted inside the target chamber where it is exposed to high energy backscatter, neutrons, and build-up debris left over from the exploded targets. This gradually alters the reflectivity of the plate, meaning that NBI needs to be calibrated regularly. Described here is NIF's design for a system capable of rapid in situ calibration of NBI that is to be installed in FY25.

4.
Rev Sci Instrum ; 93(4): 043503, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489941

RESUMO

Thomson scattering measurements in high energy density experiments are often recorded using optical streak cameras. In the low-signal regime, noise introduced by the streak camera can become an important and sometimes the dominant source of measurement uncertainty. In this paper, we present a formal method of accounting for the presence of streak camera noise in our measurements. We present a phenomenological description of the noise generation mechanisms and present a statistical model that may be used to construct the covariance matrix associated with a given measurement. This model is benchmarked against simulations of streak camera images. We demonstrate how this covariance may then be used to weight fitting of the data and provide quantitative assessments of the uncertainty in the fitting parameters determined by the best fit to the data and build confidence in the ability to make statistically significant measurements in the low-signal regime, where spatial correlations in the noise become apparent. These methods will have general applicability to other measurements made using optical streak cameras.

5.
Rev Sci Instrum ; 92(3): 033542, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819991

RESUMO

Optical collective Thomson scattering (TS) is used to diagnose magnetized high energy density physics experiments at the Magpie pulsed-power generator at Imperial College London. The system uses an amplified pulse from the second harmonic of a Nd:YAG laser (3 J, 8 ns, 532 nm) to probe a wide diversity of high-temperature plasma objects, with densities in the range of 1017-1019 cm-3 and temperatures between 10 eV and a few keV. The scattered light is collected from 100 µm-scale volumes within the plasmas, which are imaged onto optical fiber arrays. Multiple collection systems observe these volumes from different directions, providing simultaneous probing with different scattering K-vectors (and different associated α-parameters, typically in the range of 0.5-3), allowing independent measurements of separate velocity components of the bulk plasma flow. The fiber arrays are coupled to an imaging spectrometer with a gated intensified charge coupled device. The spectrometer is configured to view the ion-acoustic waves of the collective Thomson scattered spectrum. Fits to the spectra with the theoretical spectral density function S(K, ω) yield measurements of the local plasma temperatures and velocities. Fitting is constrained by independent measurements of the electron density from laser interferometry and the corresponding spectra for different scattering vectors. This TS diagnostic has been successfully implemented on a wide range of experiments, revealing temperature and flow velocity transitions across magnetized shocks, inside rotating plasma jets and imploding wire arrays, as well as providing direct measurements of drift velocities inside a magnetic reconnection current sheet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA