Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 108(6): 902-911, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917263

RESUMO

N6-methyladenosine (m6A), an epigenetic modification on RNAs, plays an important role in many physiological and pathological processes. However, the involvement of m6A in goat uterus during early pregnancy remains largely unknown. In this study, we found that the total m6A level was increasing in goat uterus as early pregnancy progressed. Methyltransferase-like 3 (METTL3) is a core catalytic subunit of the m6A methyltransferase. We thus determined the expression and regulation of METTL3 in goat uterus. METTL3 was highly expressed in the luminal and glandular epithelia from day 16 (D16) to D25 of pregnancy, and it could be up-regulated by estrogen and progesterone in goat uterus and primary endometrial epithelial cells (EECs). In EECs, knockdown or overexpression of METTL3 resulted in a significant decrease or increase of cell proliferation, respectively. METTL3 knockdown reduced the m6A level of not only total RNA but also connective tissue growth factor (CTGF) mRNA. Luciferase assay suggested that METTL3 might target the potential m6A sites in the 3'untranslated region (3'UTR) of CTGF mRNA. Moreover, METTL3 positively regulated CTGF expression, and CTGF knockdown significantly counteracted the promoting effect of METTL3 overexpression on EEC proliferation. Collectively, METTL3 is dynamically expressed in goat uterus and can affect EEC proliferation by regulating CTGF in an m6A-dependent manner. Our results will lay a foundation for further studying the crucial mechanism of METTL3-mediated m6A modification in goat uterus during early pregnancy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Cabras , Animais , Feminino , Fator de Crescimento do Tecido Conjuntivo/genética , Cabras/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células/genética
2.
J Dairy Sci ; 106(11): 8060-8071, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37268579

RESUMO

In ruminants, IFN-tau (IFNT) regulates the production of prostaglandins (PG) in the endometrium, which is crucial for conceptus adhesion. However, the related molecular regulatory mechanisms remain unclear. Forkhead box O1 (FOXO1), a member of the FOXO subfamily of transcription factors, is known to be important for mouse implantation and decidualization. In this study, we determined the spatiotemporal expression profile of FOXO1 in goat endometrium during early pregnancy. FOXO1 was highly expressed in the glandular epithelium since the onset of conceptus adhesion (d 16 of pregnancy). Then, we validated that FOXO1 could bind to the promoter of prostaglandin-endoperoxide synthase 2 (PTGS2) and increase its transcription. And the expression profile of PTGS2 was similar to that of FOXO1 in the peri-implantation uterus. Moreover, IFNT could upregulate the levels of FOXO1 and PTGS2 in goat uterus and primary endometrial epithelium cells (EEC). In EEC, the intracellular content of PGF2α was positively correlated with the levels of IFNT and FOXO1. Altogether, we found an IFNT/FOXO1/PTGS2 axis that controls the synthesis of PGF2α but not prostaglandin E2 in goat uterine glands. These findings contribute to better understanding the function of FOXO1 in the reproductive physiology of goats and provide more insights into the implantation of small ruminants.

3.
Anim Reprod Sci ; 261: 107406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141547

RESUMO

In ruminants, establishment and maintenance of pregnancy depends upon a well-coordinated interaction between the conceptus and the maternal endometrium. Epidermal growth factor (EGF) is important for embryo implantation and pregnancy establishment. However, the regulatory mechanisms of EGF expression remain unclear. FOXO1, a member of the Forkhead box O (FOXO) subfamily of transcription factors, is currently accepted as a novel endometrial receptivity marker for humans and mice owing to its timely and specific expression at the window of implantation. In this study, we examined the spatiotemporal expression profile of EGF in goat uterus during early pregnancy (Day 0 to Day 50 of pregnancy) and verified that EGF expression was regulated by FOXO1 and interferon tau (IFNT). Our results showed that EGF was highly expressed in the luminal epithelium (LE) and the glandular epithelium (GE) during conceptus adhesion (Day 16 to Day 25 of pregnancy). After implantation, EGF protein signals were continuously detected in the endometrial epithelia and appeared in the conceptus trophectoderm. Furthermore, EGF expression could be up-regulated by IFNT in goat uterus and primary endometrial epithelium cells (EECs). The luciferase assay results showed that FOXO1 could promote EGF transcription by binding to its promoter. And FOXO1 positively regulates EGF expression in goat EECs. These findings contribute to better understanding the role and regulation mechanisms of EGF during ruminant early pregnancy.


Assuntos
Endométrio , Fator de Crescimento Epidérmico , Interferon Tipo I , Proteínas da Gravidez , Gravidez , Humanos , Feminino , Animais , Camundongos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Endométrio/metabolismo , Implantação do Embrião/fisiologia , Útero/metabolismo , Ruminantes , Cabras , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
4.
Anim Reprod Sci ; 243: 107015, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689907

RESUMO

Pregnancy success is closely related to the molecular mechanisms that control energy metabolism balance. However, the mechanisms have not been fully understood. Uncoupling protein 2 (UCP2) plays a physiological role by regulating energy metabolism in numerous tissues. In this study, we determined the expression and hormone regulation of UCP2 in goat uterus. UCP2 is expressed in the luminal and glandular epithelia of goat uterus during early pregnancy, as revealed by in situ hybridization and immunohistochemistry conducted on pregnant goats. The signals were detected from day 0 (D0) to D30 of pregnancy, though weak on D16 (the adhesion period). The low levels of UCP2 on D16 were confirmed by RT-qPCR and western blot. In goat uterus and endometrial epithelial cells (EECs), UCP2 was up-regulated by progesterone and estrogen. In addition, after goat EECs were treated with genipin (an inhibitor of UCP2), not only UCP2 expression but also cell proliferation was inhibited. Collectively, UCP2 is dynamically expressed in goat uterus and can affect EEC proliferation, suggesting that it may participate in regulating the energy metabolism balance of goat uterus during early pregnancy.


Assuntos
Cabras , Útero , Animais , Feminino , Cabras/fisiologia , Gravidez , Progesterona/farmacologia , RNA Mensageiro/metabolismo , Proteína Desacopladora 2/análise , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Útero/metabolismo
5.
Theriogenology ; 180: 130-136, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973644

RESUMO

Ruminants have a superficial implantation pattern. The extended conceptus attaches to the receptive endometrium to form the cotyledonary placenta. During the attachment, a large number of events occur at the maternal-fetal interface. However, the related molecular mechanisms have not been fully understood. Integrin beta8 (ITGB8) is a subunit of integrin beta involved in embryo implantation. In this study, we determined peri-implantation expression and regulation of ITGB8 in goat uterus. The mRNA and protein levels of ITGB8 were both high in goat endometrial luminal epithelium (LE) and superficial glandular epithelium (sGE) during the adhesion period (Days 16-19 of pregnancy). Such expression profile was opposite to that of microRNA-187 (miR-187). Then, we validated that miR-187 targeted the 3' untranslated region (UTR) of ITGB8 in primary goat endometrial epithelial cells (EECs). In EECs, inhibition of miR-187 resulted in not only up-regulated ITGB8 level but also reduced cell proliferation and focal adhesion kinase (FAK) activity. Moreover, ITGB8 and miR-187 were regulated by interferon tau (IFNT). Altogether, in goat, the miR-187/ITGB8 axis may be involved in conceptus attachment and is downstream of IFNT. Our results will help us better understand the mechanisms of ruminant implantation and may provide a useful tool to improve the reproduction ratio for ruminants.


Assuntos
Cabras , Cadeias beta de Integrinas , Interferon Tipo I , Útero , Animais , Implantação do Embrião , Endométrio , Feminino , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Gravidez
6.
Theriogenology ; 153: 85-90, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446131

RESUMO

Embryo implantation is crucial for a successful pregnancy. Although many essential molecular modulators and pathways have been identified, the precise mechanisms of the process in goat remain largely unknown. CCN2 is a connective tissue growth factor participating in many biological processes; however, its presence or function in goat uterus has not yet been reported. In this study, we determined the expression and regulation of CCN2 in goat uterus. CCN2 was not detected by in situ hybridization at ED0 (Day 0 of the estrous cycle), but at ED6 (metestrus), ED12 (dioestrus), and ED16 (proestrus), with high signals in luminal epithelium, superficial glands, and caruncula matrix. During early pregnancy, CCN2 was also detected in these locations on D0 and D6 (pre-receptive uterus). The signals significantly increased on D16 and D19 (receptive uterus), and remained at high levels on D25 and D30. Similarly, the RT-qPCR assays showed that the mRNA level of CCN2 was relatively low on D0 and D6, increased on D16, peaked on D19, and kept high thereafter. Moreover, CCN2 was up-regulated not only in ovariectomized ewes subcutaneously injected with 17ß-estradiol and progesterone (separately or together), but also in cultured goat uterine epithelial cells treated with the two hormones or interferon tau (IFNτ). In conclusion, CCN2 expression may be induced by 17ß-estradiol, progesterone, and IFNτ in the luminal epithelium of goat receptive uterus, suggesting that CCN2 is involved in goat embryo adhesion during early pregnancy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Endométrio/metabolismo , Ciclo Estral/fisiologia , Regulação da Expressão Gênica/fisiologia , Cabras/fisiologia , Prenhez , Animais , Fator de Crescimento do Tecido Conjuntivo/química , Fator de Crescimento do Tecido Conjuntivo/genética , Implantação do Embrião/fisiologia , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gravidez , Progesterona/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA