Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 159(1): 91-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36153470

RESUMO

The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Ratos , Animais , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Roedores , Ratos Sprague-Dawley , Células Endoteliais , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças
2.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362131

RESUMO

Chronic stress, even stress of a moderate intensity related to daily life, is widely acknowledged to be a predisposing or precipitating factor in neuropsychiatric diseases. There is a clear relationship between disturbances induced by stressful stimuli, especially long-lasting stimuli, and cognitive deficits in rodent models of affective disorders. Regular physical activity has a positive effect on the central nervous system (CNS) functions, contributes to an improvement in mood and of cognitive abilities (including memory and learning), and is correlated with an increase in the expression of the neurotrophic factors and markers of synaptic plasticity as well as a reduction in the inflammatory factors. Studies published so far show that the energy challenge caused by physical exercise can affect the CNS by improving cellular bioenergetics, stimulating the processes responsible for the removal of damaged organelles and molecules, and attenuating inflammation processes. Regular physical activity brings another important benefit: increased stress robustness. The evidence from animal studies is that a sedentary lifestyle is associated with stress vulnerability, whereas a physically active lifestyle is associated with stress resilience. Here, we have performed a comprehensive PubMed Search Strategy for accomplishing an exhaustive literature review. In this review, we discuss the findings from experimental studies on the molecular and neurobiological mechanisms underlying the impact of exercise on brain resilience. A thorough understanding of the mechanisms underlying the neuroprotective potential of preconditioning exercise and of the role of exercise in stress resilience, among other things, may open further options for prevention and therapy in the treatment of CNS diseases.


Assuntos
Encéfalo , Corrida , Animais , Encéfalo/fisiologia , Corrida/fisiologia , Plasticidade Neuronal/fisiologia , Cognição , Afeto , Estresse Psicológico/complicações
3.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897674

RESUMO

Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, ß, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.


Assuntos
Neoplasias Encefálicas , Proteínas Relacionadas a Caderinas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Proteínas Relacionadas a Caderinas/genética , Caderinas/genética , Caderinas/metabolismo , Glioblastoma/genética , Glioma/genética , Humanos , Intervalo Livre de Progressão , Protocaderinas , RNA Mensageiro
4.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409043

RESUMO

Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Exossomos , MicroRNAs , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/metabolismo , Exossomos/metabolismo , Feminino , Humanos , MicroRNAs/metabolismo , Prognóstico , Qualidade de Vida
5.
Histochem Cell Biol ; 156(3): 283-292, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34043058

RESUMO

Progressive deterioration of the central nervous system (CNS) is commonly associated with aging. An important component of the neurovasculature is the blood-brain barrier (BBB), majorly made up of endothelial cells joined together by intercellular junctions. The relationship between senescence and changes in the BBB has not yet been thoroughly explored. Moreover, the lack of in vitro models for the study of the mechanisms involved in those changes impede further and more in-depth investigations in the field. For this reason, we herein present an in vitro model of the senescent BBB and an initial attempt to identify senescence-associated alterations within.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Animais , Barreira Hematoencefálica/citologia , Células Cultivadas , Senescência Celular , Células Endoteliais/citologia , Camundongos , Modelos Biológicos
6.
Ann Neurol ; 85(5): 667-680, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843275

RESUMO

OBJECTIVE: Plasminogen activator inhibitor-1 (PAI-1) is the key endogenous inhibitor of fibrinolysis, and enhances clot formation after injury. In traumatic brain injury, dysregulation of fibrinolysis may lead to sustained microthrombosis and accelerated lesion expansion. In the present study, we hypothesized that PAI-1 mediates post-traumatic malfunction of coagulation, with inhibition or genetic depletion of PAI-1 attenuating clot formation and lesion expansion after brain trauma. METHODS: We evaluated PAI-1 as a possible new target in a mouse controlled cortical impact (CCI) model of traumatic brain injury. We performed the pharmacological inhibition of PAI-1 with PAI-039 and stimulation by tranexamic acid, and we confirmed our results in PAI-1-deficient animals. RESULTS: PAI-1 mRNA was time-dependently upregulated, with a 305-fold peak 12 hours after CCI, which effectively counteracted the 2- to 3-fold increase in cerebral tissue-type/urokinase plasminogen activator expression. PAI-039 reduced brain lesion volume by 26% at 24 hours and 43% at 5 days after insult. This treatment also attenuated neuronal apoptosis and improved neurofunctional outcome. Moreover, intravital microscopy demonstrated reduced post-traumatic thrombus formation in the pericontusional cortical microvasculature. In PAI-1-deficient mice, the therapeutic effect of PAI-039 was absent. These mice also displayed 13% reduced brain damage compared with wild type. In contrast, inhibition of fibrinolysis with tranexamic acid increased lesion volume by 25% compared with vehicle. INTERPRETATION: This study identifies impaired fibrinolysis as a critical process in post-traumatic secondary brain damage and suggests that PAI-1 may be a central endogenous inhibitor of the fibrinolytic pathway, promoting a procoagulatory state and clot formation in the cerebral microvasculature. Ann Neurol 2019;85:667-680.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Fibrinólise/fisiologia , Serpina E2/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fibrinólise/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serpina E2/antagonistas & inibidores
7.
Int J Mol Sci ; 20(1)2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30598013

RESUMO

Microvascular endothelial cells are an essential part of many biological barriers, such as the blood⁻brain barrier (BBB) and the endothelium of the arteries and veins. A reversible opening strategy to increase the permeability of drugs across the BBB could lead to improved therapies due to enhanced drug bioavailability. Vanilloids, such as capsaicin, are known to reversibly open tight junctions of epithelial and endothelial cells. In this study, we used several in vitro assays with the murine endothelial capillary brain cells (line cEND) as a BBB model to characterize the interaction between capsaicin and endothelial tight junctions.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Capsaicina/farmacologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Animais , Barreira Hematoencefálica/citologia , Capilares/citologia , Capilares/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Endotélio Vascular/citologia , Camundongos
8.
Biol Cell ; 106(7): 219-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24749543

RESUMO

BACKGROUND INFORMATION: Glucocorticoids (GCs), including the synthetic GC derivate dexamethasone, are widely used as immunomodulators. One of the numerous side effects of dexamethasone therapy is hypertension arising from reduced release of the endothelium-derived vasodilator nitric oxide (NO). RESULTS: Herein, we described the role of dexamethasone and its glucocorticoid receptor (GR) in the regulation of NO synthesis in vitro using the mouse myocardial microvascular endothelial cell line, MyEND. GC treatment caused a firm decrease of extracellular NO levels, whereas the expression of endothelial NO synthase (eNOS) was not affected. However, GC application induced an impairment of tetrahydrobiopterin (BH4 ) concentrations as well as GTP cyclohydrolase-1 (GTPCH-1) expression, both essential factors for NO production upstream of eNOS. Moreover, dexamethasone stimulation resulted in a substantially decreased GR gene and protein expression in MyEND cells. Importantly, inhibition of proteasome-mediated proteolysis of the GR or overexpression of an ubiquitination-defective GR construct improved the bioavailability of BH4 and strengthened GTPCH-1 expression and eNOS activity. CONCLUSIONS: Summarising our results, we propose a new mechanism involved in the regulation of NO signalling by GCs in myocardial endothelial cells. We suggest that a sufficient GR protein expression plays a crucial role for the management of GC-induced harmful adverse effects, including deregulations of vasorelaxation arising from disturbed NO biosynthesis.


Assuntos
Dexametasona/farmacologia , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Receptores de Glucocorticoides/metabolismo , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Linhagem Celular , Vasos Coronários/metabolismo , Dexametasona/metabolismo , GTP Cicloidrolase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores de Glucocorticoides/genética
9.
Methods Mol Biol ; 2761: 39-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427227

RESUMO

Extracellular vesicles (EVs) are small lipid bilayer vesicles released by cells to facilitate cell-to-cell communication. To study their biological roles and functions, they need to be isolated and purified, which can be achieved through a variety of methods. Here, we describe different methods for isolating and purifying EVs, with a focus on calculating the required g-force and centrifugation time with different centrifuges and rotors. We have compiled key formulas and tested predicted parameters for EV acquisitions to provide a comprehensive guide for EV isolation.


Assuntos
Vesículas Extracelulares , Centrifugação , Centrifugação com Gradiente de Concentração/métodos
10.
Methods Mol Biol ; 2761: 27-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427226

RESUMO

The integrity of the blood-brain barrier (BBB) is essential for the normal functioning of the central nervous system (CNS). Isolated brain capillaries are essential for analyzing changes in protein and gene expression at the BBB under physiological and pathological conditions. The standard methods for isolating brain capillaries require the use of at least one or more mouse brains in order to obtain sufficient quantity and purity of brain capillaries. Here, we describe an optimized protocol for isolating and purifying capillaries from tiny amounts of mouse cerebral cortex using manual homogenization, density gradient centrifugation, and filtration while preserving the structural integrity and functional activity of microvessel fragments. Western blotting showed that proteins expressed at the BBB were enriched in mouse brain capillaries isolated by the optimized method compared to cerebral cortex protein homogenates. This approach can be used for the analysis of a variety of rare mouse genetic models and can also help the investigators to understand regional differences in susceptibility to pathological phenomena such as ischemia and traumatic brain injury. This will allow the investigators to better understand the physiology and pathology of the BBB.


Assuntos
Encéfalo , Capilares , Camundongos , Animais , Capilares/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas/metabolismo , Transporte Biológico
11.
Neural Regen Res ; 18(1): 68-73, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799511

RESUMO

Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.

12.
Pharmacol Ther ; 249: 108484, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390969

RESUMO

Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.


Assuntos
MicroRNAs , Neuralgia , Humanos , Barreira Hematoneural/fisiologia , Pericitos/fisiologia
13.
Pharmaceutics ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678814

RESUMO

In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood-brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies.

14.
Front Cell Neurosci ; 17: 1077204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794262

RESUMO

Introduction: The antibody repertoire from CSF-derived antibody-secreting cells and memory B-cells in patients with encephalitis contains a considerable number of antibodies that do not target the disease-defining autoantigen such as the GABA or NMDA receptors. This study focuses on the functional relevance of autoantibodies to brain blood vessels in patients with GABAA and NMDA receptor encephalitis. Methods: We tested 149 human monoclonal IgG antibodies from the cerebrospinal fluid of six patients with different forms of autoimmune encephalitis on murine brain sections for reactivity to blood vessels using immunohistochemistry. Positive candidates were tested for reactivity with purified brain blood vessels, effects on transendothelial electrical resistance (TEER), and expression of tight junction proteins as well as gene regulation using human brain microvascular endothelial hCMEC/D3 cells as in vitro blood-brain barrier model. One blood-vessel reactive antibody was infused intrathecally by pump injection in mice to study in vivo binding and effects on tight junction proteins such as Occludin. Target protein identification was addressed using transfected HEK293 cells. Results: Six antibodies reacted with brain blood vessels, three were from the same patient with GABAAR encephalitis, and the other three were from different patients with NMDAR encephalitis. One antibody from an NMDAR encephalitis patient, mAb 011-138, also reacted with cerebellar Purkinje cells. In this case, treatment of hCMEC/D3 cells resulted in decreased TEER, reduced Occludin expression, and mRNA levels. Functional relevance in vivo was confirmed as Occludin downregulation was observed in mAb 011-138-infused animals. Unconventional Myosin-X was identified as a novel autoimmune target for this antibody. Discussion: We conclude that autoantibodies to blood vessels occur in autoimmune encephalitis patients and might contribute to a disruption of the blood-brain barrier thereby suggesting a potential pathophysiological relevance of these antibodies.

15.
Cancers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291916

RESUMO

The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2-negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.

16.
Pharmaceutics ; 14(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145501

RESUMO

Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood-brain barrier (BBB) dysfunction.

17.
Biomolecules ; 12(10)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291557

RESUMO

Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood-brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB's integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100-300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.


Assuntos
Barreira Hematoencefálica , Glioblastoma , Animais , Camundongos , Ratos , Barreira Hematoencefálica/metabolismo , Quinases Associadas a rho/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
18.
Stroke ; 42(4): 1081-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21330632

RESUMO

BACKGROUND AND PURPOSE: Glucocorticoids potently stabilize the blood-brain barrier and ameliorate tissue edema in certain neoplastic and inflammatory disorders of the central nervous system, but they are largely ineffective in patients with acute ischemic stroke. The reasons for this discrepancy are unresolved. METHODS: To address the molecular basis for the paradox unresponsiveness of the blood-brain barrier during hypoxia, we used murine brain microvascular endothelial cells exposed to O(2)/glucose deprivation as an in vitro model. In an in vivo approach, mice were subjected to transient middle cerebral artery occlusion to induce brain infarctions. Blood-brain barrier damage and edema formation were chosen as surrogate markers of glucocorticoid sensitivity in the presence or absence of proteasome inhibitors. RESULTS: O(2)/glucose deprivation reduced the expression of tight junction proteins and transendothelial resistance in murine brain microvascular endothelial cells in vitro. Dexamethasone treatment failed to reverse these effects during hypoxia. Proteasome-dependent degradation of the glucocorticoid receptor impaired glucocorticoid receptor transactivation thereby preventing physiological glucocorticoid activity. Inhibition of the proteasome, however, fully restored the blood-brain barrier stabilizing properties of glucocorticoid during O(2)/glucose deprivation. Importantly, mice treated with the proteasome inhibitor Bortezomib in combination with steroids several hours after stroke developed significantly less brain edema and functional deficits, whereas respective monotherapies were ineffective. CONCLUSIONS: We for the first time show that inhibition of the proteasome can overcome glucocorticoid resistance at the hypoxic blood-brain barrier. Hence, combined treatment strategies may help to combat stroke-induced brain edema formation in the future and prevent secondary clinical deterioration.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/enzimologia , Glucocorticoides/farmacologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/enzimologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteassoma , Animais , Barreira Hematoencefálica/patologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Transformada , Modelos Animais de Doenças , Resistência a Múltiplos Medicamentos/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Glucocorticoides/uso terapêutico , Hipóxia-Isquemia Encefálica/complicações , Camundongos , Técnicas de Cultura de Órgãos , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/enzimologia , Resultado do Tratamento
19.
Arterioscler Thromb Vasc Biol ; 30(2): 298-304, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19910637

RESUMO

OBJECTIVE: Estrogens have multiple effects on vascular physiology and function. In the present study, we look for direct estrogen target genes within junctional proteins. METHODS AND RESULTS: We use murine endothelial cell lines of brain and heart origin, which express both subtypes of estrogen receptor, ERalpha and ERbeta. Treatment of these cells with 17beta-estradiol (E2) led to an increase in transendothelial electric resistance and a most prominent upregulation of the tight junction protein claudin-5 expression. A significant increase of claudin-5 promoter activity, mRNA, and protein levels was detected in cells from both vascular beds. In protein lysates and in immunoreactions on brain sections from ovariectomized E2-treated mice, we noticed an increase in claudin-5 protein and mRNA content. Treatment of cells with a specific ERbeta agonist, diarylpropionitrile, revealed the same effect as E2 stimulation. Moreover, we detected significantly lower claudin-5 mRNA and protein content in ERbeta knockout mice. CONCLUSIONS: We describe claudin-5 as a novel estrogen target in vascular endothelium and show in vivo (brain endothelium) and in vitro (brain and heart endothelium) effects of estrogen on claudin-5 levels. The estrogen-induced increase in junctional protein levels may lead to an improvement in vascular structural integrity and barrier function of vascular endothelium.


Assuntos
Encéfalo/irrigação sanguínea , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Estradiol/metabolismo , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Animais , Permeabilidade Capilar , Linhagem Celular , Claudina-5 , Impedância Elétrica , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Bombas de Infusão Implantáveis , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/metabolismo , Ovariectomia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fatores de Tempo , Ativação Transcricional , Transfecção , Regulação para Cima
20.
Neural Regen Res ; 16(7): 1372-1376, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33318420

RESUMO

Infusion of the colloid hydroxyethylstarch has been used for volume substitution to maintain hemodynamics and microcirculation after e.g., severe blood loss. In the last decade it was revealed that hydroxyethylstarch can aggravate acute kidney injury, especially in septic patients. Because of the serious risk for critically ill patients, the administration of hydroxyethylstarch was restricted for clinical use. Animal studies and recently published in vitro experiments showed that hydroxyethylstarch might exert protective effects on the blood-brain barrier. Since the prevention of blood-brain barrier disruption was shown to go along with the reduction of brain damage after several kinds of insults, we revisit the topic hydroxyethylstarch and discuss a possible niche for the application of hydroxyethylstarch in acute brain injury treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA