RESUMO
We address the engineering of Fano resonances and metasurfaces, by placing it in the general context of open non-Hermitian systems composed of coupled antenna-type resonators. We show that eigenfrequency solutions obtained for a particular case of scattering matrix are general and valid for arbitrary antenna radiative rates, thanks to an appropriate transformation of parametric space by simple linear expansion and rotation. We provide evidence that Parity-Time symmetry phase transition path and bound states in continuum (BIC) path represent the natural axis of universal scattering matrix solutions in this parametric coupling-detuning plane and determine the main characteristics of Fano resonance. Specifically, we demonstrate the control of asymmetry and sharpness of Fano resonance through navigation between BIC and PT-symmetric phase transition exceptional point. In particular, we demonstrate a fully symmetric Fano resonance in a system of two coupled bright and dark mode resonators. This result goes beyond current wisdom on this topic and demonstrates the universality of scattering matrix eigenfrequency solutions highlighted in our study. The validity of our approach is corroborated through comparison with experimental and full 3D numerical simulations results published in the literature making it thus possible to grasp a large body of experimental work carried out in this field. The detrimental impact of absorption losses on the contrast of the Fano resonance, which must be two orders of magnitude lower than the radiative losses, is also evidenced.
RESUMO
In recent years, frequency-multiplexed metasurfaces have received extensive attention due to the increasing demand for multifunction integration and communication capacity. However, multi-channel studies achieved with a mono-layered frequency-multiplexed metasurface are limited. Herein, a universal design strategy for a frequency-multiplexed mono-layered geometric phase metasurface is proposed by utilizing Pancharatnam-Berry (PB) phase modulations. The elementary meta-atom is judiciously designed to transmit the cross-polarized component of a circularly polarized incident wave at four distinct frequencies with independent 360° phase shifts and a constant amplitude of 0.48, close to the theoretical limit of 0.5. As a proof-of-concept demonstration, a four-channel meta-hologram is designed to achieve distinct holographic images of "three foci", "five foci", "J" and "X" at 7.2â GHz, 9.1â GHz, 10.9â GHz, and 15.2â GHz respectively. The images are projected in the desired azimuth planes by exploiting the time-shifting properties of the Fourier transform. The experimental and full-wave simulation results are in good agreement, which indicates that the proposed strategy has great potentials in various applications, such as multi-channel imaging and information encryption technology.
RESUMO
An interleaved coding Janus metasurface is proposed, which can generate bidirectional functionalities with full phase control of the reflected and transmitted waves. By introducing rotation and geometric parameter changes into the meta-atoms, the reflection and transmission channels with required energy distribution and foci are realized. More remarkably, our approach is based on a single metasurface design that arranges two types of unidirectional propagating unit structures with simultaneous desired reflection and transmission properties into a checkerboard configuration to obtain four different holograms. The results verify the excellent performances of the multifunctional metasurface, laying a foundation for manipulation of EM waves with more degree of freedom, and promoting its applications in the entire frequency spectrum.
RESUMO
This publisher's note contains corrections to Opt. Lett.48, 3275 (2023)10.1364/OL.491711.
RESUMO
Metagratings with zero load impedance are proposed to achieve efficient beam splitting. Different from previously proposed metagratings that require specific capacitive and/or inductive structures to achieve load impedance, the metagrating proposed here consists solely of simple microstrip-line structures. Such a structure overcomes the implementation constraints such that low-cost fabrication technology can be applied for metagratings operating at higher frequencies. The detailed theoretical design procedure is presented together with numerical optimizations to achieve the specific design parameters. Finally, several reflection-type beam-splitting devices with different pointing angles are designed, simulated, and experimentally measured. The results show very high performance at 30â GHz, paving the way to simple and low-cost printed circuit board (PCB) metagratings at millimeter-wave and higher frequencies.
Assuntos
Impedância Elétrica , Desenho de EquipamentoRESUMO
This work presents an approach to realize the dispersion engineering of spoof plasmonic metamaterials with controllable cutoff frequencies. Interdigital capacitance structures are applied to construct the unit cells. Dispersion properties are firstly analyzed to investigate the effects of interdigital capacitance, and the influence of the geometrical parameters of the proposed unit cell on the cutoff frequencies is studied. Then, a spoof surface plasmon polariton (SSPP) transmission line (TL) is developed based on the proposed unit cell together with a smooth transition. The matching principles of the transition are explained by the dispersion curves and the normalized impedance of the corresponding matching unit cells. Finally, the transmission characteristics of the TL are simulated and measured to validate the feasibility of the proposed strategy. Both the lower and upper cutoff frequencies can be tuned jointly by the extra degrees of freedom provided by the interdigital capacitance structures. In comparison with designs based on a substrate-integrated waveguide (SIW), the proposed strategy can reduce the transversal dimension by a factor of two under the same conditions. This work can greatly accelerate the development of versatile microwave integrated circuits and systems based on spoof plasmonic metamaterials.
RESUMO
The extent to which the introduction of subwavelength spatial modulation of electromagnetic properties improves absorption performances is studied. The proposed absorber represents an evolution from the Salisbury screen, whereby the uniform resistive layer is replaced by a metagrating. A periodic supercell that supports only the specular reflection is first designed, and load impedances are then engineered to suppress this diffraction mode. To experimentally demonstrate the concept, four prototypes are fabricated and tested in the microwave domain around 10â GHz. Furthermore, the performances assessed by a merit factor derived from Rozanov's bound show that the use of metagratings opens up good perspectives for improving the state of the art. Our findings can pave the way toward the development of high performance absorbers for applications across a broad frequency spectrum.
RESUMO
Here, we propose a double-face copper-cladded meta-hologram that can efficiently manipulate the amplitude of electromagnetic waves in both transmission and reflection spaces, depending on the polarization state of the incident electromagnetic wave. The proposed meta-hologram is validated by encoding the transmission-reflection amplitude information of two independent images into a single metasurface. The holographic images obtained from measurements agree qualitatively with simulation results. The proposed metasurface presents a novel, to the best of our knowledge, scheme for electromagnetic wavefront control in the whole space and overcomes the limitations of narrow frequency band operation.
RESUMO
Broadband metasurfaces have attracted significant attention for a variety of applications in imaging and communication systems. Here, a method to alleviate the chromatic aberrations issue is proposed in the microwave region using dynamic phase compensation enabled by a reconfigurable metasurface. The dispersion characteristic of the meta-atom implemented with varactor diodes can be flexibly manipulated electronically, such that the dispersion-induced phase distortions over a wide frequency band can be compensated dynamically to achieve broadband performances. Various aberration-free functionalities can be realized with the proposed active metasurface. Near-field measurements are performed on a fabricated prototype to demonstrate aberration-free beam bending and hologram imaging, showing good agreement with simulation results. Such an active metasurface platform paves the way to efficient devices for wireless power transfer, sensors, and communication and antenna systems at radio or much higher frequencies.
RESUMO
Metasurfaces presenting diversified functionalities have broadened the prospect of manipulating the phase, amplitude, and polarization from the optical to microwave fields. Although the frequency-multiplexing strategy is one of the intuitive and effective approaches to expand the number of channels, demonstrations reporting on the combination between directional asymmetric transmission and frequency-multiplexing via an ultrathin flat device are limited. In this study, a novel, to the best of our knowledge, strategy is proposed to generate four independent holographic images under opposite illumination directions at two operating frequencies, utilizing a single metasurface composed of two types of metallic resonators and one grating layer. Specifically, each scattering channel with independent information makes full use of the whole metasurface. Simulation and experimental results show good agreement, highlighting the attractive capabilities of the multi-functional metasurface platform, which provides more freedom for the manipulation of electromagnetic waves.
RESUMO
Metasurfaces (MSs) have enabled the emergence of new ideas and solutions in the design of antennas and for the control of electromagnetic waves. In this work, we propose to design a directional high-gain reconfigurable planar antenna based on a phase-modulated metasurface. Reconfigurability is achieved by integrating varactor diodes into the elementary meta-atoms composing the metasurface. As a proof of concept, a metasurface prototype that operates around 5 GHz is designed and fabricated to be tested in an antenna configuration. The metasurface is flexibly controlled by different bias voltages applied to the varactor diodes, thus allowing the user to control its phase characteristics. By assigning judiciously calculated phase profiles to the metasurface illuminated by a feeding primary source, different scenarios of far-field patterns can be considered. Different phase profiles are tested, allowing us to, firstly, achieve a highly directive boresight radiation and, secondly, to steer the main radiated beam towards an off-normal direction. The whole design process is verified by numerical simulations and is validated experimentally by far-field antenna measurements. The proposed metasurface enables the design of directive flat antennas with beam-scanning characteristics without complex feeding systems and power-consuming phase shifters, and thus provides potential interests for next generation antenna hardware.
RESUMO
Multi-functional metamaterial absorbers have attracted considerable attention for applications in the microwave frequency regime. In this paper, we report the design, fabrication, and characterization of frequency-selective absorbers, which exhibit substantial absorption property within a pre-defined frequency band, while at the same time behaving as a highly transparent screen in another targeted frequency band. The proposed designs consist of a symmetrically patterned indium tin oxide film acting as an absorbing layer, two dielectric substrates, and a cross-slot metal sheet frequency selective surface playing the role of a transmitting layer. In order to validate the functionalities of the designed absorbers, equivalent circuit models, full-wave numerical simulations and measurements are presented. The measured results, in good agreement with the numerical ones, show that the proposed designs realize 80% broadband absorption over the desired frequency range and possess a transparent window in a higher or lower frequency band for a wide range of incidence angles up to 60°. These performances suggest that the proposed designs are promising candidates for multi-functional scattering control and communication applications.
RESUMO
Self-accelerating optical Airy beams present attractive characteristics such as self-bending and non-diffraction, which have rendered this field a research hotspot in recent years. In this paper, the desired phase changes of the unit cell structure for the transmitted cross-polarized wave can be realized by modifying the rotation angle of the unit cell, while the amplitude can be modulated by changing the inner diameter R of the double layer split-ring resonator (SRR). As such, the amplitude and phase modulations can be performed simultaneously and independently to achieve the desired transmitted wave envelope. Furthermore, a novel, to the best of our knowledge, strategy of 2D Airy beam deflection control is also presented by simultaneously modifying the phase and amplitude of the envelope of the transmitted beam, and its feasibility is theoretically and experimentally demonstrated. Our proposed designs suggest high application potentials in the fields of optical particle manipulation, controllable wireless energy transmission, and complex terrain exploration.
RESUMO
This work presents a new technique for enhancing the performance of a multiple-input multiple-output (MIMO) antenna by improving its correlation coefficient ρ. A broadband dielectric structure is designed using the transformation electromagnetics (TE) concept to decorrelate the fields of closely placed radiating elements of an MIMO antenna, thereby decreasing ρ and mutual coupling. The desired properties of the broadband dielectric wave tilting structure (DWTS) are determined by using quasi-conformal transformation electromagnetics (QCTE). Next, the permittivity profile of the DWTS is realized by employing air-hole technology, which is based on the effective medium theory, and the DWTS is fabricated using the additive manufacturing (3D printing) technique. The effectiveness of the proposed technique is verified by designing two-element patch-based MIMO antenna prototypes operating at 3 GHz, 5 GHz, and 7 GHz, respectively. The proposed technique helped to reduce the correlation coefficient ρ in the range of 37% to 99% in the respective operating bandwidth of each MIMO antenna, thereby, in each case, improving the isolation between antenna elements by better than 3 dB, which is an excellent performance.
RESUMO
In this work, a polarization-free coding metasurface is proposed to manipulate circularly polarized waves. Compared to a Pancharatnam-Berry phase metasurface, the proposed design not only allows for overcoming anti-symmetrical response characteristics between orthogonal circularly polarized states to enable achieving identical functionality under both right-handed and left-handed circularly polarized wave illuminations and avoiding polarization-conversion losses but also offers additional degree of freedom in the control of handedness. As a proof-of-concept demonstration, a polarization-free multi-bit coding metasurface is designed to realize helicity-switched holograms in the microwave region. Experimental measurements performed on a fabricated prototype reveal outstanding imaging quality with extremely high imaging efficiency above 76% for arbitrary polarizations at 10â GHz. Our proposed method expands the route in manipulating circularly polarized waves and can be applied over the whole electromagnetic spectrum for wavefront manipulation.
RESUMO
Controlling diffracted waves has attracted extensive research interests these last years particularly for the potential application of beaming functionality. In this paper, we propose to realize on-axis beaming of diffracted electromagnetic waves by using a phase- gradient metasurface. The structure is optimally designed in order to transform surface waves to propagating waves and to enhance transmission through a subwavelength aperture. Both numerical simulations and near-field measurements are performed at microwave frequencies to validate the proposed concept. Furthermore, the metasurface is frequency-tunable and can be controlled by an external DC bias voltage. Consequently, by adjusting the electromagnetic response of each unit cell through the bias voltage, different phase gradients can be tailored, enabling broadband operation spanning from 9 GHz to 12 GHz.
RESUMO
In this paper, coding Huygens' metasurface (CHM) is proposed for holographic imaging with enhanced quality. A weighted holographic algorithm is used to calculate the phase distribution at the interface and to design the CHM. Experimental demonstration performed in the microwave region validates holographic imaging with the ability to modulate energy distribution among focal points and improve image quality. By judiciously engineering both electric and magnetic dipolar resonators, the proposed digital Huygens' meta-atom is able to provide a full transmission-phase covering the whole range of 2π together with a near-unity transmission efficiency. The proof-of-concept experiments show that holographic imaging quality can be indeed improved by using digital meta-atoms with several bits. Furthermore, the modulation of intensity distribution among focal points is experimentally realized by using the 3-bits CHM. The proposed CHM hologram shows great potential in a variety of application fields, such as programmable high-resolution imaging lenses, microscopy, data storage, information processing, and computer-generated holograms.
RESUMO
An ultrathin reflection-type metamirror is proposed for multi-focusing with any desired focusing fashion including focal number and location. The metamirror is composed of reflection-type Pancharatnam-Berry (P-B) phase elements, which are able to provide full reflection phase of 2π, together with near-unity reflection efficiency by judiciously engineering the rotation angle of each latter element. A holographic algorithm is utilized to calculate the phase distribution at the interface of the metamirror to achieve the desired multi-focus spots. Experimental demonstrations performed in microwave region show good imaging quality with high reflection efficiency and imaging efficiency. The proposed metamirror provides a high-performance solution for low-cost and lightweight beam-shaping and beam-focusing devices.
RESUMO
A planar metasurface composed of electronically tunable meta-atoms incorporating voltage-controlled varactor diodes is proposed as a reconfigurable meta-mirror for wavefronts control in microwave antenna applications. The dispersion responses of the cells are individually tailored in the reconfigurable metasurface so as to overcome the bandwidth limitations of passive metasurfaces and also to control the phase characteristics. By controlling the bias voltage of the varactor diodes on the planar metasurface, the phase characteristics of reflectors can be engineered. The reconfigurable meta-mirror is utilized to implement three different types of reflectors. As such, a reflectarray, a cylindrical parabolic reflector and a dihedral reflector are numerically verified in microwave regime through finite element method. Moreover, experimental measurements are performed on a fabricated prototype to validate the proposed device. Frequency agility, beam deflection and beam focusing are the main functionalities demonstrated from the proposed reconfigurable meta-mirror.
RESUMO
Vortex electromagnetic (EM) waves hold promise for their ability to significantly increase the transmission capacity of wireless communication systems via the torsion resistance defined by different topological charges associated with the orbital angular momentum (OAM). However, the application of vortex waves in remote distance transmission is limited by its characteristic of divergence. In this paper, a lens based on a phase-modulation metasurface (MS) is proposed that enables vortex EM waves to converge, thereby improving their propagation performance at microwave frequencies. A phase-shift distribution on the plane of the MS is obtained based on the concept of the optical converging axicon, which can convert a Laguerre-Gaussian (LG) beam to a Bessel beam based on changing the propagation direction. Simulation results verify the ability of the MS lens to achieve OAM beam focusing, which is advantageous for enhancing the propagation directivity and increasing the gain in the main lobes of vortex waves. This is of particular importance in microwave wireless communication applications.