Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443302

RESUMO

An approach based on a dendrimer display of B- and T-cell epitopes relevant for antibody induction has been shown to be effective as a foot-and-mouth disease (FMD) vaccine. B2T dendrimers combining two copies of the major FMD virus (FMDV) type O B-cell epitope (capsid proteinVP1 (140-158)) covalently linked to a heterotypic T-cell epitope from non-structural protein 3A (21-35), henceforth B2T-3A, has previously been shown to elicit high neutralizing antibody (nAb) titers and IFN-γ-producing cells in both mice and pigs. Here, we provide evidence that the B- and T-cell epitopes need to be tethered to a single molecular platform for successful T-cell help, leading to efficient nAb induction in mice. In addition, mice immunized with a non-covalent mixture of B2T-3A dendrimers containing the B-cell epitopes of FMDV types O and C induced similarly high nAb levels against both serotypes, opening the way for a multivalent vaccine platform against a variety of serologically different FMDVs. These findings are relevant for the design of vaccine strategies based on B- and T-cell epitope combinations.


Assuntos
Dendrímeros/química , Epitopos de Linfócito T/imunologia , Vírus da Febre Aftosa/imunologia , Peptídeos/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/imunologia , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Camundongos , Especificidade da Espécie , Suínos
2.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814514

RESUMO

African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating.IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Virais/administração & dosagem , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Células Cultivadas , Imunização , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Suínos , Proteínas Virais/genética
3.
J Virol ; 83(23): 12290-300, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19793823

RESUMO

The African swine fever virus (ASFV) protein pE248R, encoded by the gene E248R, is a late structural component of the virus particle. The protein contains intramolecular disulfide bonds and has been previously identified as a substrate of the ASFV-encoded redox system. Its amino acid sequence contains a putative myristoylation site and a hydrophobic transmembrane region near its carboxy terminus. We show here that the protein pE248R is myristoylated during infection and associates with the membrane fraction in infected cells, behaving as an integral membrane protein. Furthermore, the protein localizes at the inner envelope of the virus particles in the cytoplasmic factories. The function of the protein pE248R in ASFV replication was investigated by using a recombinant virus that inducibly expresses the gene E248R. Under repressive conditions, the ASFV polyproteins pp220 and pp62 are normally processed and virus particles with morphology indistinguishable from that of those produced in a wild-type infection or under permissive conditions are generated. Moreover, the mutant virus particles can exit the cell as does the parental virus. However, the infectivity of the pE248R-deficient virions was reduced at least 100-fold. An investigation of the defect of the mutant virus indicated that neither virus binding nor internalization was affected by the absence of the protein pE248R, but a cytopathic effect was not induced and early and late gene expression was impaired, indicating that the protein is required for some early postentry event.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Estruturais Virais/fisiologia , Internalização do Vírus , Replicação Viral , Animais , Membrana Celular/química , Efeito Citopatogênico Viral , Proteínas de Membrana/deficiência , Proteínas Estruturais Virais/deficiência
4.
Front Vet Sci ; 7: 498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851051

RESUMO

Synthetic dendrimer peptides are a promising strategy to develop new FMD vaccines. A dendrimer peptide, termed B2T-3A, which harbors two copies of the major FMDV antigenic B-cell site [VP1 (140-158)], covalently linked to a heterotypic T-cell from the non-structural protein 3A [3A (21-35)], has been shown to protect pigs against viral challenge. Interestingly, the modular design of this dendrimer peptide allows modifications aimed at improving its immunogenicity, such as the replacement of the T-cell epitope moiety. Here, we report that a dendrimer peptide, B2T-3D, harboring a T-cell epitope from FMDV 3D protein [3D (56-70)], when inoculated in pigs, elicited consistent levels of neutralizing antibodies and high frequencies of IFN-γ-producing cells upon in vitro recall with the homologous dendrimers, both responses being similar to those evoked by B2T-3A. Lymphocytes from B2T-3A-immunized pigs were in vitro-stimulated by T-3A peptide and to a lesser extent by B-peptide, while those from B2T-3D- immunized animals preferentially recognized the T-3D peptide, suggesting that this epitope is a potent inducer of IFN-γ producing-cells. These results extend the repertoire of T-cell epitopes efficiently recognized by swine lymphocytes and open the possibility of using T-3D to enhance the immunogenicity and the protection conferred by B2T-dendrimers.

5.
Vaccines (Basel) ; 8(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936706

RESUMO

Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals whose control relies on efficient vaccination. We have reported that dendrimer peptide B2T, with two copies of FMDV B-cell epitope VP1 (136-154) linked through maleimide units to T-cell epitope 3A (21-35)], elicits potent B- and T-cell specific responses and confers solid protection in pigs to type-O FMDV challenge after two doses of peptide. Herein we now show that B2T evokes specific protective immune responses after administration of a single dose of either 2 or 0.5 mg of peptide. High titers of ELISA and neutralizing antibodies against FMDV were detectable at day 15 post-immunization. Likewise, activated T cells and induced IFN-γ response to in vitro recall with FMDV peptides were also detected by the same day. Further, in 70% of B2T-vaccinated pigs, full protection-no clinical signs of disease-was observed upon virus challenge at day 25 post-immunization. These results strengthen the potential of B2T as a safe, cost-effective candidate vaccine conferring adequate protection against FMDV with a single dose. The finding is particularly relevant to emergency scenarios permitting only a single shot immunization.

6.
Vaccines (Basel) ; 8(3)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707834

RESUMO

A broadly protective and biosafe vaccine against foot-and-mouth disease virus (FMDV) remains an unmet need in the animal health sector. We have previously reported solid protection against serotype O FMDV afforded by dendrimeric peptide structures harboring virus-specific B- and T-cell epitopes, and also shown such type of multivalent presentations to be advantageous over simple B-T-epitope linear juxtaposition. Chemically, our vaccine platforms are modular constructions readily made from specified B- and T-cell epitope precursor peptides that are conjugated in solution. With the aim of developing an improved version of our formulations to be used for on-demand vaccine applications, we evaluate in this study a novel design for epitope presentation to the immune system based on a multiple antigen peptide (MAP) containing six immunologically relevant motifs arranged in dendrimeric fashion (named B2T-TB2). Interestingly, two B2T units fused tail-to-tail into a single homodimer platform elicited higher B- and T-cell specific responses than former candidates, with immunization scores remaining stable even after 4 months. Moreover, this macromolecular assembly shows consistent immune response in swine, the natural FMDV host, at reduced dose. Thus, our versatile, immunogenic prototype can find application in the development of peptide-based vaccine candidates for various therapeutic uses using safer and more efficacious vaccination regimens.

7.
Front Immunol ; 11: 621537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613553

RESUMO

Dendrimeric peptide constructs based on a lysine core that comprises both B- and T-cell epitopes of foot-and-mouth disease virus (FMDV) have proven a successful strategy for the development of FMD vaccines. Specifically, B2T dendrimers displaying two copies of the major type O FMDV antigenic B-cell epitope located on the virus capsid [VP1 (140-158)], covalently linked to a heterotypic T-cell epitope from either non-structural protein 3A [3A (21-35)] or 3D [3D (56-70)], named B2T-3A and B2T-3D, respectively, elicit high levels of neutralizing antibodies (nAbs) and IFN-γ-producing cells in pigs. To assess whether the inclusion and orientation of T-3A and T-3D T-cell epitopes in a single molecule could modulate immunogenicity, dendrimers with T epitopes juxtaposed in both possible orientations, i.e., constructs B2TT-3A3D and B2TT-3D3A, were made and tested in pigs. Both dendrimers elicited high nAbs titers that broadly neutralized type O FMDVs, although B2TT-3D3A did not respond to boosting, and induced lower IgGs titers, in particular IgG2, than B2TT-3A3D. Pigs immunized with B2, a control dendrimer displaying two B-cell epitope copies and no T-cell epitope, gave no nABs, confirming T-3A and T-3D as T helper epitopes. The T-3D peptide was found to be an immunodominant, as it produced more IFN-γ expressing cells than T-3A in the in vitro recall assay. Besides, in pigs immunized with the different dendrimeric peptides, CD4+ T-cells were the major subset contributing to IFN-γ expression upon in vitro recall, and depletion of CD4+ cells from PBMCs abolished the production of this cytokine. Most CD4+IFN-γ+ cells showed a memory (CD4+2E3-) and a multifunctional phenotype, as they expressed both IFN-γ and TNF-α, suggesting that the peptides induced a potent Th1 pro-inflammatory response. Furthermore, not only the presence, but also the orientation of T-cell epitopes influenced the T-cell response, as B2TT-3D3A and B2 groups had fewer cells expressing both cytokines. These results help understand how B2T-type dendrimers triggers T-cell populations, highlighting their potential as next-generation FMD vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dendrímeros/farmacologia , Epitopos de Linfócito B , Epitopos de Linfócito T , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Peptídeos , Doenças dos Suínos/imunologia , Animais , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/farmacologia , Epitopos de Linfócito T/farmacologia , Feminino , Febre Aftosa/prevenção & controle , Peptídeos/imunologia , Peptídeos/farmacologia , Suínos , Doenças dos Suínos/prevenção & controle
8.
Vaccines (Basel) ; 8(3)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911818

RESUMO

Dendrimer peptides are promising vaccine candidates against the foot-and-mouth disease virus (FMDV). Several B-cell epitope (B2T) dendrimers, harboring a major FMDV antigenic B-cell site in VP1 protein, are covalently linked to heterotypic T-cell epitopes from 3A and/or 3D proteins, and elicited consistent levels of neutralizing antibodies and IFN-γ-producing cells in pigs. To address the contribution of the highly polymorphic nature of the porcine MHC (SLA, swine leukocyte antigen) on the immunogenicity of B2T dendrimers, low-resolution (Lr) haplotyping was performed. We looked for possible correlations between particular Lr haplotypes with neutralizing antibody and T-cell responses induced by B2T peptides. In this study, 63 pigs immunized with B2T dendrimers and 10 non-immunized (control) animals are analyzed. The results reveal a robust significant correlation between SLA class-II Lr haplotypes and the T-cell response. Similar correlations of T-cell response with SLA class-I Lr haplotypes, and between B-cell antibody response and SLA class-I and SLA class-II Lr haplotypes, were only found when the sample was reduced to animals with Lr haplotypes represented more than once. These results support the contribution of SLA class-II restricted T-cells to the magnitude of the T-cell response and to the antibody response evoked by the B2T dendrimers, being of potential value for peptide vaccine design against FMDV.

9.
Sci Rep ; 10(1): 1657, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015411

RESUMO

Elucidation of the molecular basis of the stability of foot-and-mouth disease virus (FMDV) particles is relevant to understand key aspects of the virus cycle. Residue N17D in VP1, located at the capsid inner surface, modulates the resistance of FMDV virion to dissociation and inactivation at acidic pH. Here we have studied whether the virion-stabilizing effect of amino acid substitution VP1 N17D may be mediated by the alteration of electrostatic charge at this position and/or the presence of the viral RNA. Substitutions that either introduced a positive charge (R,K) or preserved neutrality (A) at position VP1 17 led to increased sensitivity of virions to inactivation at acidic pH, while replacement by negatively charged residues (D,E) increased the resistance of virions to acidic pH. The role in virion stability of viral RNA was addressed using FMDV empty capsids that have a virtually unchanged structure compared to the capsid in the RNA-filled virion, but that are considerably more resistant to acidic pH than WT virions, supporting a virion-destabilizing effect of the RNA. Remarkably, no differences were observed in the resistance to dissociation at acidic pH between the WT empty capsids and those harboring replacement N17D. Thus, the virion-destabilizing effect of viral RNA at acidic pH can be partially restored by introducing negatively charged residues at position VP1 N17.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Febre Aftosa/química , RNA Viral/química , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus da Febre Aftosa/genética , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Estabilidade de RNA , Eletricidade Estática , Vírion/química , Vírion/genética
10.
Transbound Emerg Dis ; 67(4): 1614-1622, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31994334

RESUMO

Foot-and-mouth disease virus (FMDV) causes a widely extended contagious disease of livestock. We have previously reported that a synthetic dendrimeric peptide, termed B2 T(mal), consisting of two copies of a B-cell epitope [VP1(140-158)] linked through maleimide groups to a T-cell epitope [3A(21-35)] of FMDV, elicits potent B- and T-cell-specific responses and confers solid protection in pigs to type O FMDV challenge. Longer duration of the protective response and the possibility of inducing protection after a single dose are important requirements for an efficient FMD vaccine. Herein, we show that administration of two doses of B2 T(mal) elicited high levels of specific total IgGs and neutralizing antibodies that lasted 4-5 months after the peptide boost. Additionally, concomitant levels of IFN-γ-producing specific T cells were observed. Immunization with two doses of B2 T(mal) conferred a long-lasting reduced susceptibility to FMDV infection, up to 136 days (19/20 weeks) post-boost. Remarkably, a similar duration of the protective response was achieved by a single dose of B2 T(mal). The effect on the B2 T(mal) vaccine of RNA transcripts derived from non-coding regions in the FMDV genome, known to enhance the immune response and protection induced by a conventional inactivated vaccine, was also analysed. The contribution of our results to the development of FMD dendrimeric vaccines is discussed.


Assuntos
Epitopos de Linfócito B/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Peptídeos/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Dendrímeros , Epitopos de Linfócito T/imunologia , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Imunidade , Testes de Neutralização , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Linfócitos T/imunologia , Vacinas Virais/imunologia
11.
Virus Res ; 173(1): 168-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23041357

RESUMO

We summarize findings of comparative studies in different cells cultures susceptible to ASFV infection, through the analysis of virus components and infectious virus particles production, as alternative means to grow field and laboratory ASFV strains. We also provide different methods to assay the infectivity of ASFV samples and to purify the infective virus particles. Finally we describe the general strategy to construct virus deletion mutants that can be engineered to obtain attenuated ASFV strains suitable for vaccine approaches.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Biologia Molecular/métodos , Virologia/métodos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/patogenicidade , Animais , Técnicas de Cultura de Células/métodos , Deleção de Genes
12.
Virology ; 294(2): 372-82, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12009879

RESUMO

Permissive Vero cells develop apoptosis, as characterized by DNA fragmentation, caspases activation, cytosolic release of mitochondrial cytochrome c, and flow cytometric analysis of DNA content, upon infection with African swine fever virus (ASFV). To determine the step in virus replication that triggers apoptosis, we used UV-inactivated virus, inhibitors of protein and nucleic acid synthesis, and lysosomotropic drugs that block virus uncoating. ASFV-induced apoptosis was accompanied by caspase-3 activation, which was detected even in the presence of either cytosine arabinoside or cycloheximide, indicating that viral DNA replication and protein synthesis were not required to activate the apoptotic process. The activation of caspase-3 was released from chloroquine inhibition 2 h after virus absorption, while the infection with UV-inactivated ASFV did not induce the activation of the caspase cascade. We conclude that ASFV induces apoptosis in the infected cell by an intracellular pathway probably triggered during the process of virus uncoating.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Apoptose , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Suínos , Células Vero , Proteínas Virais/biossíntese
13.
Virology ; 326(1): 160-70, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15262504

RESUMO

The open reading frame EP153R of African swine fever virus (ASFV) encodes a nonessential protein that has been involved in the hemadsorption process induced in virus-infected cells. By the use of a virus deletion mutant lacking the EP153R gene, we have detected, in several virus-sensitive cells, increased levels of caspase-3 and cell death as compared with those obtained after infection with the parental BA71V strain. Both transient and stable expression of the EP153R gene in Vero or COS cells resulted in a partial protection of the transfected lines from the apoptosis induced in response to virus infection or external stimuli. The presence of gene EP153R resulted in a reduction of the transactivating activity of the cellular protein p53 in Vero cell cultures in which apoptosis was induced by virus infection or staurosporine treatment. This is to our knowledge the first description of a viral C-type lectin with anti-apoptotic properties.


Assuntos
Vírus da Febre Suína Africana/genética , Apoptose , Genes Virais/fisiologia , Lectinas Tipo C/genética , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Animais , Caspase 3 , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular , Sobrevivência Celular , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/metabolismo , Expressão Gênica , Lectinas Tipo C/biossíntese , Lectinas Tipo C/metabolismo , Macrófagos/virologia , Fases de Leitura Aberta , Suínos , Transfecção , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA