RESUMO
In this work the behavior of hydrogel-based matrices, the most widespread systems for oral controlled release of pharmaceuticals, has been mathematically described. In addition, the calculations of the model have been validated against a rich set of experimental data obtained working with tablets made of hydroxypropyl methylcellulose (a hydrogel) and theophylline (a model drug). The model takes into account water uptake, hydrogel swelling, drug release, and polymer erosion. The model was obtained as an improvement of a previous code, describing the diffusion in concentrated systems, and obtaining the erosion front (which is a moving boundary) from the polymer mass balance (in this way, the number of fitting parameters was also reduced by one). The proposed model was found able to describe all the observed phenomena, and then it can be considered a tool with predictive capabilities, useful in design and testing of new dosage systems based on hydrogels.
Assuntos
Portadores de Fármacos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Derivados da Hipromelose/química , Modelos Teóricos , Teofilina/químicaRESUMO
The use of natural resources and the enhancing of technologies are outlining the strategies of modern scientific-technological research for sustainable health products manufacturing. In this context, the novel simil-microfluidic technology, a mild production methodology, is exploited to produce liposomal curcumin as potential powerful dosage system for cancer therapies and for nutraceutical purposes. Through simil-microfluidic technology, based on interdiffusion phenomena of a lipid-ethanol phase in an aqueous flow, massive productions of liposomes at nanometric scale can be obtained. In this work, studies on liposomal production with useful curcumin loads were performed. In particular, process issues (curcumin aggregations) were elucidated and formulation optimization for curcumin load was performed. The main achieved result has been the definition of operative conditions for nanoliposomal curcumin production with interesting loads and encapsulation efficiencies.
RESUMO
A cryogel is a cross-linked polymer network with different properties that are determined by its manufacturing technique. The formation of a cryogel occurs at low temperatures and results in a porous structure whose pore size is affected by thermal conditions. The adjustable pore sizes of cryogels make them attractive for diverse applications. In this study, the influence of the external operational temperature, which affects the cooling and freezing rates, on the production of cryogels with 2% w/w agarose is investigated. Moreover, a mathematical model is developed to simulate the cryogel production process and provide an initial estimate of the pore size within the structure. The predictions of the model, supported by qualitative light microscopy images, demonstrate that cryogels produced at higher process temperatures exhibit larger pore sizes. Moreover, the existence of pore size distribution within the gel structure is confirmed. Finally, stress relaxation tests, coupled with an image analysis, validates that cryogels produced at lower temperatures possess a higher stiffness and slower water release rates.
RESUMO
Syringe pumps are very useful tools to ensure a constant and pulsation-free flow rate, however usability is limited to batch processes. This article shows an open-source method for manufacturing a push pull syringe pump, valid for continuous processes, easy to build, low-cost and programmable. The push-pull syringe pump (PPSP) is driven by an Arduino nano ATmega328P which controls a NEMA 17 in microstepping via the A4988 stepper driver. The Push-Pull Syringe Pump setup is configurable by means of a digital encoder and an oled screen programmed using C ++. A PCB was designed and built to facilitate the assembly of the device. The continuous flow is guaranteed by four non-return valves and a dampener, which has been sized and optimized for use on this device. Finally, tests were carried out to evaluate the flow rates and the linearity of the flow. The device is achievable with a cost of less than 100 .
RESUMO
Herein we report on a detailed study about the gelation kinetics of carboxymethyl chitosan-zinc (CMCh-Zn) supramolecular hydrogel by taking advantage of its intrinsic fluorescence property. A specific gelation device is designed and the gel front can be directly visualized under 365 nm UV light. The results show that when increasing Zn2+ concentration from 0.1 M to 1.0 M, the apparent diffusion coefficient increases gradually from 2.72 × 10-6 cm2/s to 4.50 × 10-6 cm2/s. The gelation kinetics then is described with a "zero order" mathematical model, proving that the gel thickness is related to the square root of the gelation time and the diffusion step is the controlling step of the gelation process. Later a more advanced model, developed in 1D geometry and solved numerically, is used to describe and predict experimental results, proving its reliability and the correct description of all the phenomena involved in the gelation process of CMCh-Zn hydrogel.
Assuntos
Quitosana , Hidrogéis , Modelos Teóricos , Imagem Óptica , Reprodutibilidade dos Testes , ZincoRESUMO
Hydrogels are peculiar soft materials formed by a 3D polymeric network surrounded by water molecules. In these systems the mechanical and the chemical energy are well balanced and an applied external stimulus (mechanical or chemical) can cause a distinctive response, where the contributions of the mechanics and the mass transport are combined to form a "poroviscoelastic" behavior. In this work the poroviscoelastic behavior of the agarose gels has been investigated, from the experimental and modeling points of view, by applications of external mechanical stimuli. The pure gel, brought in the non-equilibrium condition, showed that the combined effect of mechanical viscoelasticity and water transport were essential to reach the new equilibrium condition. Furthermore, the agarose gel loaded with a model drug, theophylline, showed that the mechanical stimulus can enhance the drug release from the system by stretching the polymeric chains, modifying the mesh size and therefore the drug diffusion coefficient.
Assuntos
Hidrogéis/química , Polímeros/química , Teofilina/química , Difusão , Liberação Controlada de Fármacos , Porosidade , Viscosidade , Água/químicaRESUMO
Hydrogels-based systems (HBSs) for drug delivery are nowadays extensively used and the interest in modeling their behavior is dramatically increasing. In this review a critical overview on the modeling approaches is given, quantitatively and qualitatively analyzing the publications on the subject, the trend of the publications per year and the type of modeling approaches. It was found that, despite the drug release fitting models (i.e. Higuchi's equation) are the most abundant, their use for HBSs is decreasing in the last years and luckily, considering the limiting assumption on which they were built, they will be confined to simple mathematical fitting equations. Within the mechanistic models the "multi-component" with the swelling approximation (mass transport only) and with the mechanics (fully coupled) are experiencing the highest growth rate, with much more interest toward the last one that, in the next years could be able to provide a first principles model. Statistical models, especially based on the response surface methodology, are rapidly spreading in the scientific community mainly thanks to their ability to be predictive, regardless of the phenomenology, in the analyzed design space with very low efforts. Neural Networks models for HBSs, in countertrend with their use in the pharmaceutical industry, have never take off preferring less data demanding statistical models.
Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Modelos Teóricos , Liberação Controlada de Fármacos , Humanos , Modelos Estatísticos , Redes Neurais de ComputaçãoRESUMO
Due to its versatile properties, hydroxypropyl methylcellulose (HPMC) is largely used in many applications and deeply studied in the various fields such as pharmaceuticals, biomaterials, agriculture, food, water purification. In this work, vitamin B12 loaded HPMC granules were produced to investigate their potential application as nutraceutical products. To this aim the impact of vitamin load on physico-chemical, mechanical and release properties of granules, achieved by wet granulation process, was investigated. In particular, three different loads of B12 (1%, 2.3% and 5% w/w) were assayed. Unloaded granules (used as control) and loaded granules were dried, sieved, and then the suitable fraction for practical uses, 0.45-2mm in size, was fully characterized. Results showed that the vitamin incorporation of 5% reduced the granulation performance in the range size of 0.45-2mm and led granules with higher porosity, more rigid and less elastic structures compared to unloaded granules and those loaded at 1% and 2.3% of B12. Vitamin release kinetics of fresh and aged granules were roughly found the same trends for all the prepared lots; however, the vitamin B12 was released more slowly when added with a load at 1% w/w, suggesting a better incorporation.
Assuntos
Fenômenos Químicos , Derivados da Hipromelose/química , Fenômenos Mecânicos , Vitamina B 12/farmacologia , Água/química , Varredura Diferencial de Calorimetria , Força Compressiva , Tamanho da PartículaRESUMO
Hydrogels are widespread materials, used in several frontier fields, due to their peculiar behavior: they couple solvent mass transport to system mechanics, exhibiting viscoelastic and poroelastic characteristics. The full understanding of this behavior is crucial to correctly design such complex systems. In this study agarose gels has been investigated through experimental stress-relaxation tests and with the aid of a 3D poroviscoelastic model. At the investigated experimental conditions, the agarose gels samples show a prevalent viscoelastic behavior, revealing limited water transport and an increase of the stiffness as well as of the relaxation time along with the polymer concentration. The model parameters, derived from the fitting of some experimental data, have been generalized and used to purely predict the behavior of another set of gels. The stress-relaxation tests coupled with mathematical modeling demonstrated to be a powerful tool to study hydrogels' behavior.
RESUMO
The controlled delivery of drugs, including siRNAs, can be effectively obtained using Hydrogel- Based Drugs Delivery Systems (HB-DDSs). Successful design of HB-DDSs requires the knowledge of the mechanisms that influence drug release. The modeling of the physical phenomena involved could help in the development and optimization of HB-DDS, sensibly reducing the time and costs required by a trial-and-error procedures. The modeling is rather complex because of the presence of several, synergistic and competing, transport phenomena. In this work a general framework useful for modeling the HB-DDS has been derived and it is proposed, coupling and homogenizing the literature models. It is shown that all of them can be traced back to two different approaches: multiphasic models and multicomponent mixture models. In the first one the hydrogel is seen as constituted by different phases, the behavior of each one being described by their own mass and momentum conservation equations. In the second approach, the hydrogel is considered as made of one phase composed by several components.
Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrogéis/química , Humanos , Modelos MolecularesRESUMO
The purpose of this study was to investigate the hydration behavior of two matrix formulations containing the cellulose derivative hydroxypropyl methylcellulose (HPMC). The two HPMC batches investigated had different substitution pattern along the backbone; the first one is referred to as heterogeneous and the second as homogenous. The release of both the drug molecule theophylline and the polymer was determined. Additionally, the water concentrations at different positions in the swollen gel layers were determined by Magnetic Resonance Imaging. The experimental data was compared to predicted values obtained by the extension of a mechanistic Fickian based model. The hydration of tablets containing the more homogenous HPMC batch showed a gradual water concentration gradient in the gel layer and could be well predicted. The hydration process for the more heterogeneous batch showed a very abrupt step change in the water concentration in the gel layer and could not be well predicted. Based on the comparison between the experimental and predicted data this study suggests, for the first time, that formulations with HPMC of different heterogeneities form gels in different ways. The homogeneous HPMC batch exhibits a water sorption behavior ascribable to a Ficks law for the diffusion process whereas the more heterogeneous HPMC batches does not. This conclusion is important in the future development of simulation models and in the understanding of drug release mechanism from hydrophilic matrices.
Assuntos
Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Metilcelulose/química , Química Farmacêutica , Preparações de Ação Retardada , Polímeros , Solubilidade , Comprimidos , ÁguaRESUMO
BACKGROUND AND PURPOSE: Coated pellets are widely used as oral drug delivery systems, being highly accepted by patients and with several advantages compared to single unit devices. However, their behaviour needs to be elucidated so as to improve the effectiveness of the formulations and reduce production costs. In spite of this important issue, few mathematical modelling studies have been attempted, mostly due to the complexities arising from the system's polydispersity (non-homogeneous multiple-unit particulate systems), which has been scarcely investigated using mechanistic models. EXPERIMENTAL APPROACH: A mechanistic mathematical model was developed that was able to describe the single pellet behaviour in terms of hydration, drug dissolution, diffusion and release and particle size. This model was then extended to describe and predict the behaviour of mono- and polydispersed ensembles of pellets. KEY RESULTS: The polydispersity arising from the size and distribution of the inert core was shown to have a minimal effect on the drug release profile, whereas the thickness and distribution of the polymeric film was found to be the key parameter determining the drug release. CONCLUSIONS AND IMPLICATIONS: The mechanistic model developed, which is capable of determining the polydispersity of the drug delivery system, was able to predict the release kinetics from ensembles of pellets and to highlight the key parameters that need to be controlled in the production of pellet-based drug delivery systems, demonstrating its use as a powerful predictive tool.
Assuntos
Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Implantes de Medicamento/química , Composição de Medicamentos , Modelos Químicos , Tamanho da Partícula , Solubilidade , Propriedades de SuperfícieRESUMO
The aim of this study was to investigate the water transport over free standing films based on the aqueous ethyl cellulose (EC) coating Surelease® and the drug (Theophylline) release mechanism from coated pellets. It was found that the main drug release rate from pellets was controlled by a diffusion mechanism. However, the drug release rate was altered by addition of sodium chloride to the external release medium. A decrease in the drug release rate when sodium chloride is added to the release medium has traditionally been used to indicate an osmotic drug release mechanism. However, our findings that the release rate decreased by sodium chloride addition could be explained by sodium chloride diffusing through the coating layer into the inner parts of the pellets, decreasing the solubility of Theophylline. This gave a reduced drug concentration gradient over the coating layer and thus a slower release rate. Furthermore, this study shows, as expected, that the transport of water through Surelease® films into the pellets was faster than the transport out of Theophylline (approx. seven times), which was the reason why the pellets were swelling during the release. It was also shown that the drug release rate, determined for both whole dose release and for single pellets, decreased with increasing thickness (from 16 to 51µm) of the coating layer controlling the drug release rate.
Assuntos
Celulose/análogos & derivados , Liberação Controlada de Fármacos , Teofilina/análise , Celulose/química , Preparações de Ação Retardada , Solubilidade , ÁguaRESUMO
siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management can be advantaged by physical-mathematical descriptions (modeling) in order to clarify the involved phenomena from the preparative step of dosage systems to the description of drug-body interactions, which allows improving the design of delivery systems/processes/therapies. This review analyzes a few mathematical modeling approaches currently adopted to describe the siRNAs delivery, the main procedures in siRNAs vectors' production processes and siRNAs vectors' release from hydrogels, and the modeling of pharmacokinetics of siRNAs vectors. Furthermore, the use of physical models to study the siRNAs vectors' fate in blood stream and in the tissues is presented. The general view depicts a framework maybe not yet usable in therapeutics, but with promising possibilities for forthcoming applications.
Assuntos
Sistemas de Liberação de Medicamentos , RNA Interferente Pequeno/administração & dosagem , Humanos , Hidrogéis/química , Modelos Teóricos , RNA Interferente Pequeno/farmacocinéticaRESUMO
Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update.
Assuntos
Engenharia Biomédica , Engenharia Química , Animais , Humanos , Preparações FarmacêuticasRESUMO
Alginate solutions in the presence of bivalent ions can form ionic cross-linked gels. In particular gelation conditions the gel structure can be characterized by great anisotropy with the presence of straight capillaries along a preferential direction. These materials can find applications mainly in high-tech sectors, like tissue engineering, where the gel characteristics play a crucial role. Despite the need of mastering the capillary formation and properties, the process remains a poorly known problem, and its development is left to trial and error procedures. In this work a quantitative approach to the description of the capillary formation process has been developed. The theory proposed by Treml et al. (2003) has been implemented and extended to an alginate different from the one used in that study and two different ions (calcium and copper). Some of the model parameters have been derived through simple measurements; others have been scaled using proper scaling equations. Experiments have been performed in different gelation conditions, varying alginate and ionic solution concentrations, to highlight the effects of these parameters on the anisotropic structure and to validate the model. In all the analyses done, the model has performed nicely showing a good reliability in the prediction of gel characteristics like capillary formation, capillary length and process time.
Assuntos
Alginatos/química , Cálcio/química , Cobre/química , Géis/química , Modelos Teóricos , Anisotropia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Íons , Reprodutibilidade dos Testes , Soluções , Fatores de TempoRESUMO
The bio-adhesion is a complex phenomenon which takes place when two materials (at least one of biological nature, the other usually is a polymeric one) are held together for extended periods of time, usually for local drug delivery purposes. Despite bio-adhesion is widely exploited in commercial pharmaceuticals such as the buccal patches, the underlying phenomena of the process are not completely clarified yet. In this study experimental tests, in which the role of biological membranes is played by a water-rich agarose gel whereas patches are mimicked by hydrogel tablets (made of Carbopol or of Carbopol added with NaCl), have been used to analyze the behavior of the model system above described. Tablets have been forced to adhere on the agarose gel, and after a given contact time they have been detached, recording the required forces. Furthermore weight gain of the tablets (the water transported from the agarose gel toward the tablet) has been quantified. Water transport (during the time in which the contact between tablet and agarose gel is held) and elastic part of mechanical response during the detachment are modelled to achieve a better understanding of the adhesion process. Both the two sub-models nicely reproduce, respectively, the weight gain as well as the swelling of the Carbopol tablets, and the point at which the mechanical response ceases to be purely elastic.
Assuntos
Carboidratos/química , Elasticidade , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Água/química , Resinas Acrílicas/química , Adesividade , Modelos Teóricos , Peso Molecular , Cloreto de Sódio/química , ComprimidosRESUMO
Controlled release by oral administration is mainly achieved by pharmaceuticals based on hydrogels. Once swallowed, a matrix made of hydrogels experiences water up-take, swelling, drug dissolution and diffusion, polymer erosion. The detailed understanding and quantification of such a complex behavior is a mandatory prerequisite to the design of novel pharmaceuticals for controlled oral delivery. In this work, the behavior of hydrogel-based matrices has been investigated by means of several experimental techniques previously pointed out (gravimetric, and based on texture analysis); and then all the observed features were mathematically described using a physical model, defined and recently improved by our research group (based on balance equations, rate equations and swelling predictions). The agreement between the huge set of experimental data and the detailed calculations by the model is good, confirming the validity of both the experimental and the theoretical approaches.