Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol J ; 19(2): e2300113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050772

RESUMO

Nucleic acid detection is an important tool for clinical diagnosis. The purification of the sample is the most time-consuming step in the nucleic acid testing process and will affect the results of the assay. Here, we developed a surface modification-based nucleic acid purification method and designed an accompanying set of centrifugation equipment and chips to integrate the steps of nucleic acid purification on a single platform. The results of experiments with HeLa cells and HPV type 16 as samples showed that the mentioned method had good nucleic acid purification capability and the accompanying equipment greatly simplified the operation of the experimenters in the whole process. Overall, our equipment can improve the efficiency of nucleic acid purification and is suitable for application in larger-scale clinical assays.


Assuntos
Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Humanos , Microfluídica , Células HeLa , Desenho de Equipamento , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Amplificação de Ácido Nucleico
2.
Bioact Mater ; 41: 15-29, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39101028

RESUMO

Fungal corneal ulcer is one of the leading causes of corneal blindness in developing countries. Corneal scars such as leukoplakia are formed due to inflammation, oxidative stress and non-directed repair, which seriously affect the patients' subsequent visual and life quality. In this study, drawing inspiration from the oriented structure of collagen fibers within the corneal stroma, we first proposed the directional arrangement of CuTA-CMHT hydrogel system at micro and macro scales based on the 3D printing extrusion method combined with secondary patterning. It played an antifungal role and induced oriented repair in therapy of fungal corneal ulcer. The results showed that it effectively inhibited Candida albicans, Aspergillus Niger, Fusarium sapropelum, which mainly affects TNF, NF-kappa B, and HIF-1 signaling pathways, achieving effective antifungal functions. More importantly, the fibroblasts interacted with extracellular matrix (ECM) of corneal stroma through formation of focal adhesions, promoted the proliferation and directional migration of cells in vitro, induced the directional alignment of collagen fibers and corneal stromal orthogonally oriented repair in vivo. This process is mainly associated with MYLK, MYL9, and ITGA3 molecules. Furthermore, the downregulation the growth factors TGF-ß and PDGF-ß inhibits myofibroblast development and reduces scar-type ECM production, thereby reducing corneal leukoplakia. It also activates the PI3K-AKT signaling pathway, promoting corneal healing. In conclusion, the oriented CuTA-CMHT hydrogel system mimics the orthogonal arrangement of collagen fibers, inhibits inflammation, eliminates reactive oxygen species, and reduces corneal leukoplakia, which is of great significance in the treatment of fungal corneal ulcer and is expected to write a new chapter in corneal tissue engineering.

3.
Lab Chip ; 23(2): 349-361, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36606538

RESUMO

Taking information as material to realize non-electronic physical computing is a promising idea, which facilitates the integration of technologies in different fields such as chemistry, biology, and mechanical control into a new computing platform. Here, we propose a novel, efficient and robust manipulation platform that drives droplet computing by way of inertial force. Combining this with droplet flow path design, we demonstrated multiple basic functions of droplet manipulation, including storage, dosing, interrupts, controllable release and addressing. These basic functions without external control lay the foundation for the realization of droplet calculation. We developed AND, OR, and XOR logic gates of the "liquid circuit" and combined them into a binary adder, which successfully completed the addition of four-digit binary numbers through droplet movement. Moreover, we attempted to perform algorithmic design for biological information under the control of droplets based on synchronous logical operations, developing the possibility of biological applications. This programmable physical computing system exists independently of electronic computing, aiming to supplement and expand the computing methods outside the field of electronic technology and to open a new method for the algorithmic operation of materials after combining new physical computing technologies such as biological or chemical computing.


Assuntos
Lógica , Tecnologia , Fenômenos Mecânicos
4.
Talanta ; 259: 124486, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37060723

RESUMO

Modular integration of functional components on the chip and increasement in control accuracy through real-time alteration in the force direction of droplets is an effective way to optimize centrifugal microfluidic systems and realize passive components, compact modules, and high-throughput control. Conventional centrifugal microfluidic chips are mainly driven and controlled by centrifugal force and Euler force. The control valves are easily affected by machining precision, making the control unstable. In this study, a novel centrifugal microfluidic system is introduced to improve the freedom and accuracy of chip control while facilitating the design and addition of passive functional components. Furthermore, we modularize the centrifugal microfluidic chip to greatly shorten the period of design and optimization cycle and achieve chip reusability and multi-threaded control. Finally, to verify the feasibility of the modular centrifugal microfluidic chip applied to high-throughput nucleic acid screening, we test the nucleic acid purification and detection colorimetric reactions based on the modular centrifugal microfluidic chip. Among them, Chelex-100 is used to realize the purification of nucleic acid in cell lysate, and the purified solution can realize amplification in the PCR instrument, and the nucleic acid detection results are consistent with the off-chip kit by experimental testing. The system has great flexibility and stability under the acceptable purity of nucleic acid, which indicates that the platform has great potential for large-scale rapid screening applications.


Assuntos
Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Ácidos Nucleicos/análise , Microfluídica , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico
5.
Int J Bioprint ; 8(3): 578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105134

RESUMO

In nature, many biological tissues are composed of oriented structures, which endow tissues with special properties and functions. Although traditional hydrogels can achieve a high level of biomimetic composition, the orderly arrangement of internal structures remains a challenge. Therefore, it is of great significance to synthesize hydrogels with oriented structures easily and quickly. In this study, we first proposed and demonstrated a fabrication process for producing a well-ordered and dual-responsive cellulose nanofibers + hyaluronic acid methacrylate (CN+HAMA) hydrogels through an extrusion-based three-dimensional (3D) printing process. CN in the CN+HAMA hydrogels are directionally aligned after extrusion due to shear stress. In addition, the synthesized hydrogels exhibited responsive behaviors to both temperature and ultraviolet light. Since the temperature-responsiveness is reversible, the hydrogels can transit between the gelation and solution states while retaining their original qualities. Furthermore, the developed well-oriented CN+HAMA hydrogels induced directional cell growth, paving the way for potential applications in ordered biological soft-tissue repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA