Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(46): 31754-31769, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964729

RESUMO

This study aimed to address the challenges associated with silicon (Si) anode materials in Li-ion batteries, such as their large volume effect and poor electrical conductivity. To overcome these limitations, a novel composite microsphere called pSi/Ag was developed using quartz waste through a combination of high-energy ball-milling, spray drying, and magnesiothermic reduction techniques. The morphology and structure of the pSi/Ag composite were thoroughly characterized using various methods, including X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy. The results revealed that the Ag nanoparticles were uniformly dispersed within the porous micron-sized Si sphere particles, leading to enhanced electrochemical performance compared to pure porous silicon that did not undergo the spray drying process. The use of micron-sized Si prevented the excessive formation of the solid electrolyte interphase film, and the pSi/Ag-5 anode, prepared with 5 wt% AgNO3 as a precursor, demonstrated an impressive initial Coulombic efficiency of 92.8%. Moreover, a high specific capacity of 1251.4 mA h g-1 over 300 cycles at a current density of 4000 mA g-1 was attributed to the improved conductivity provided by the Ag nanoparticles in the Si matrix. The straightforward synthesis method employed in this study to produce pSi/Ag presents a promising approach for the future development of high-performance silicon anodes in Li-ion batteries.

2.
J Environ Manage ; 310: 114734, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35220103

RESUMO

Cyanobacterial blooms are one of the most severe ecological problems affecting lakes. The vertical migration of cyanobacteria in the water column increases the uncertainty in the formation and disappearance of blooms, which may be closely associated with light, temperature, and wind speed. However, it is difficult to quantitatively evaluate the influencing factors of cyanobacteria vertical movement in natural environment compared to the laboratory experimental environment. Besides, both field survey and laboratory experiment method have the difficulties in determining the diurnal vertical migration of cyanobacteria at the synoptic lake scale. In this study, based on the diurnal dynamics of cyanobacterial bloom intensity (CBI) observed by the Geostationary Ocean Color Imager (GOCI) from 2011 to 2019, the daily variations, floating rate, and sinking rate of Microcystis aeruginosa were calculated in the natural environment. Then, the effects of light, temperature, and wind speed on the vertical migration of M. aeruginosa were analysed from the perspectives of day, night, and season. The results are as follows: the records of three typical patterns of diurnal CBI exhibited strong seasonal variability from the 9-year statistics; at night, the buoyancy recovery rate of cyanobacterial colonies increased with temperature, so that at temperature >15 °C and wind speed <3 m s-1, CBI reached the maximum of the whole day at 08:16; the sinking rate of M. aeruginosa was positively correlated with the cumulated light energy at both synoptic and pixel scale; the upward migration speed of M. aeruginosa was positively correlated with the maximum wind speed of the day before cyanobacterial bloom. Therefore, the severer cyanobacterial blooms were often observed by satellite images after strong winds. The analysis of diurnal variation, floating rate, and sinking rate of M. aeruginosa will expand our knowledge for further understanding the formation mechanism of cyanobacterial blooms and for improving the accuracy of model simulation to predict the hourly changes in cyanobacterial blooms in Lake Taihu.


Assuntos
Cianobactérias , Microcystis , China , Monitoramento Ambiental/métodos , Eutrofização , Lagos
3.
Angew Chem Int Ed Engl ; 61(16): e202200384, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35119192

RESUMO

It is vital to dynamically regulate S activity to achieve efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. Herein, we report using cobalt sulfide as an electron reservoir to enhance the activity of sulfur cathodes, and simultaneously combining with cobalt single atoms as double-end binding sites for a stable S conversion process. The rationally constructed CoS2 electron reservoir enables the straight reduction of S to short-chain sodium polysulfides (Na2 S4 ) via a streamlined redox path through electron transfer. Meanwhile, cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, which immobilize in situ formed long-chain products and catalyze their conversion, thus realizing high S utilization and sustainable cycling stability. The as-developed sulfur cathodes exhibit a superior rate performance of 443 mAh g-1 at 5 A g-1 with a high cycling capacity retention of 80 % after 5000 cycles at 5 A g-1 .

4.
Small ; 17(48): e2006504, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33908696

RESUMO

Alkali-metal/sulfur batteries hold great promise for offering relatively high energy density compared to conventional lithium-ion batteries. By providing viable sulfur composites that can be effectively used, carbonaceous hosts as a key component play critical roles in overcoming the preliminary challenges associated with the insulating sulfur and its relatively soluble polysulfides. Herein, a comprehensive overview and recent progress on carbonaceous hosts for advanced next-generation alkali-metal/sulfur batteries are presented. In order to encapsulate the highly active sulfur mass and fully limit polysulfide dissolution, strategies for tailoring the design and synthesis of carbonaceous hosts are summarized in this work. The sticking points that remain for sulfur cathodes in current alkali-metal/sulfur systems and the future remedies that can be provided by carbonaceous hosts are also indicated, which can lead to long cycling lifetimes and highly reversible capacities under repeated sulfur reduction reactions in alkali-metal/sulfur during cycling.

5.
J Biochem Mol Toxicol ; 35(10): e22871, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34338398

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Retrospective studies suggest that using local/regional anesthetic (LA/RA) is associated with better outcomes in primary HCC patients. In this study, we evaluated the effects of LA/RA bupivacaine in HCC cells and the underlying molecular mechanisms. The biological functions of bupivacaine in HCC cells were evaluated by transcriptome RNA sequencing, cell viability assay, bromodeoxyuridine incorporation assay, colony formation assay, flow cytometry, western blot, wound healing assay, transwell cell migration assay, tumor xenograft formation, and lung metastasis assay. Bupivacaine suppressed proliferation and induced apoptosis of HepG2 and SNU-449 cells in a time- and dose-dependent manner. Bupivacaine treatment also decreased colony formation, migration, and invasion of HepG2 and SNU-449 cells. In mouse models, bupivacaine repressed tumor xenograft growth and lung metastasis of HepG2 cells. Transcriptome sequencing of HepG2 cells suggested that PI3K/Akt and MAPK signaling pathways were suppressed by bupivacaine treatment. In western blot analysis, bupivacaine reduced the expression of total and phosphorylated Akt, mTOR, and MAPK. Furthermore, reactivated PI3K/Akt and MAPK signaling by EGF or NRG1 partially reversed the effects of bupivacaine on cell growth, colony formation, and invasion of HCC cells. Local anesthetic bupivacaine suppressed proliferation, migration and invasion, and induced apoptosis of HCC cells. Our results provided novel insights into the local anesthetic bupivacaine in the therapy of HCC patients.


Assuntos
Anestésicos Locais/administração & dosagem , Bupivacaína/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Transcriptoma , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bioresour Technol ; 414: 131582, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39384048

RESUMO

Efforts are underway to explore alternative methods to the Haber-Bosch process for sustainable ammonia production, while the potential for ammonia extraction from natural nitrogenous biomass is under-exploited. Here, a synergistic catalytic strategy involving acid and modified Ru-based catalysts is communicated for the direct production of amines and ammonia from chitin. Phosphoric acid promotes the cleavage of ether bonds in biomass polymers and also serves to protect amino groups from being removed. Selective hydrogenation, deoxygenation, and amination can be achieved by controllably adjusting the ratio of Ru0/Run+. The utilization of nitrogen atoms in chitin can reach up to 95 % (21 % amines, 74 % ammonium), and the catalytic process is applicable to waste shrimp shells. This study demonstrates the possibility of efficient production of nitrogen-containing compounds from abundant biopolymers.

7.
Water Res ; 250: 120991, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113596

RESUMO

Under the influence of intensive human activities and global climate change, the sources and compositions of dissolved organic matter (DOM) in the eastern plain lake (EPL) region in China have fluctuated sharply. It has been successfully proven that the humification index (HIX), which can be derived from three-dimensional excitation-emission matrix fluorescence spectroscopy, can be an effective proxy for the sources and compositions of DOM. Therefore, combined with remote sensing technology, the sources and compositions of DOM can be tracked on a large scale by associating the HIX with optically active components. Here, we proposed a novel HIX remote sensing retrieval (IRHIX) model suitable for Landsat series sensors based on the comprehensive analysis of the covariation mechanism between HIX and optically active components in different water types. The validation results showed that the model runs well on the independent validation dataset and the satellite-ground synchronous sampling dataset, with an uncertainty ranging from 30.85 % to 36.92 % (average ± standard deviation = 33.6 % ± 3.07 %). The image-derived HIX revealed substantial spatiotemporal variations in the sources and compositions of DOM in 474 lakes in the EPL during 1986-2021. Subsequently, we obtained three long-term change modes of the HIX trend, namely, significant decline, gentle change, and significant rise, accounting for 74.68 %, 17.09 %, and 8.23 % of the lake number, respectively. The driving factor analysis showed that human activities had the most extensive influence on the DOM humification level. In addition, we also found that the HIX increased slightly with increasing lake area (R2 = 0.07, P < 0.05) or significantly with decreasing trophic state (R2 = 0.83, P < 0.05). Our results provide a new exploration for the effective acquisition of long-term dynamic information about the sources and compositions of DOM in inland lakes and provide important support for lake water quality management and restoration.


Assuntos
Matéria Orgânica Dissolvida , Qualidade da Água , Humanos , Lagos/química , China , Espectrometria de Fluorescência/métodos
8.
Clin Cosmet Investig Dermatol ; 16: 2893-2897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869532

RESUMO

Background: Cutaneous metastasis is rare in clinical practice, especially that from primary hepatocellular carcinoma (HCC), which is even rarer. Case Presentation: This report describes a male patient with HCC with cutaneous metastases to the nasal tip. The patient developed a raised nodule at the nasal tip 5 years after surgery for HCC, with surface ulceration and crusting and no obvious symptoms. Abdominal computed tomography (CT) showed an obvious mass in the liver. The skin lesions on the nasal tip were confirmed to be cutaneous metastasis of HCC by histopathological and immunohistochemical examinations. Conclusion: The incidence of cutaneous metastasis of HCC is extremely low, and nasal tip cutaneous metastasis of HCC has no specific clinical manifestations; therefore, it needs to be distinguished from rosacea rhinophyma, fungal and atypical mycobacterial infections, tumours of vascular origin, and tumours of skin appendages that occur in the nasal tip and is prone to misdiagnosis and missed diagnosis, thus requiring clinical dermatologists and otolaryngologists to be aware of such metastasis.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38041778

RESUMO

Tumor-associated macrophages (TAMs) are major infiltrating immune cells in liver cancer. They are polarized to anti-tumor M1 type or tumor-supporting M2 type in a dynamic changing state. Tramadol, a synthetic opioid, exhibits tumor-suppressing effect in several cancers, but whether it plays a role in TAMs polarization is uncertain. In the present study, the potential influence of tramadol on TAMs polarization was explored in liver cancer. An orthotopic murine Hepa 1-6 liver cancer model was constructed. The potential function of tramadol was evaluated by cell viability assay, EdU incorporation assay, flow cytometry, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) assay, T cell proliferation and suppression assays and western blot. We found that tramadol suppressed proliferation and tumor formation of murine Hepa 1-6 cells in vitro and in vivo. Tramadol reprogramed the immune microenvironment to favor M1 macrophage polarization in orthotopic Hepa 1-6 tumors. Moreover, tramadol facilitated M1 macrophage polarization and inhibited M2 macrophage polarization of bone marrow-derived macrophages (BMDMs) and human THP-1 macrophages in vitro. Furthermore, tramadol-treated BMDMs promoted proliferation and activation of splenic CD4+ and CD8+ T cells. Tramadol induced cellular ROS production and mitochondrial dysfunction of BMDMs. Finally, tramadol activated NF-κB signaling in BMDMs and THP-1 macrophages, while inhibition of NF-κB signaling by JSH-23 attenuated the influence of tramadol on macrophage polarization. In conclusion, these data elucidated a novel anti-tumor mechanism of tramadol in liver cancer. Tramadol might be a promising treatment strategy for liver cancer patients.

10.
J Hazard Mater ; 459: 132080, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37499493

RESUMO

Owing to accelerated urbanisation, increased pollutants have degraded urban water quality. Timely identification and control of pollution sources enable relevant departments to effectively perform water treatment and restoration. To achieve this goal, a remote sensing identification method for urban water pollution sources applicable to unmanned aerial vehicle (UAV) hyperspectral images was established. First, seven fluorescent components were obtained through three-dimensional excitation-emission matrix fluorescence spectroscopy of dissolved organic matter (DOM) combined with parallel factor analysis. Based on the hierarchical cluster analysis of the seven fluorescence components and three spectral indices, four pollution source (PS) types were determined, namely, domestic sewage, terrestrial input, agricultural and algal, and industrial wastewater sources. Second, several water colour and optical parameters, including the absorption coefficient of chromophoric DOM at 254 nm, humification index, chlorophyll-a concentration, and hue angle, were utilised to develop an identification method with a recognition accuracy exceeding 70% for the four PSs that is suitable for UAV hyperspectral data. This study demonstrated the potential of identifying PSs by combining the fluorescence characteristics of DOM with the optical properties of water, thus expanding the application of remote sensing technologies and providing more comprehensive and reliable information for urban water quality management.

11.
Sci Total Environ ; 894: 165064, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355112

RESUMO

Quantitative assessments of the contributions of various environmental factors to cyanobacterial blooms at different timescales are lacking. Here, the hourly cyanobacterial bloom intensity (CBI) index, a proxy for the intensity of surface cyanobacterial biomass, was obtained from the geostationary satellite sensor Geostationary Ocean Color Imager (GOCI) over the years 2011-2018. Generalized additive model was applied to determine the responses of monthly and hourly CBI to the perturbations of meteorological factors, water stability and nutrients, with variation partitioning analysis used to analyze the relative importance of the three groups of variables to the inter-monthly variation of diurnal CBI in each season. The effects of environmental factors on surface cyanobacterial blooms varied at different timescales. Hourly CBI increased with increasing air temperature up to 18 °C but decreased sharply above 18 °C, whereas monthly CBI increased with increasing air temperature up to 30 °C and stabilized thereafter. Among all the environmental factors, air temperature had the largest contribution to the intra-daily variation in CBI; water stability had the highest explanation rate for the inter-monthly variation of diurnal CBI during summer (42.3 %) and autumn (56.9 %); total phosphorus explained the most variation in monthly CBI (18.5 %). Compared with cyanobacterial biomass (CB) in the water column, high light and low wind speed caused significantly lower CBI in July and higher CBI in November respectively. Interestingly, cyanobacterial blooms at the hourly scale were aggravated by climate warming during winter and spring but inhibited during summer and autumn. Collectively, this study reveals the effects of environmental factors on surface cyanobacterial blooms at different timescales and suggests the consideration of the hourly effect of air temperature in short-term predictions of cyanobacterial blooms.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Meteorologia , Monitoramento Ambiental , Eutrofização , Cianobactérias/fisiologia , Nutrientes , Água , China
12.
Sci Total Environ ; 856(Pt 1): 158869, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152846

RESUMO

Chemical oxygen demand concentration (CCOD) is widely used to indicate the degree of organic pollution of lakes, reservoirs and rivers. Mastering the spatiotemporal distribution of CCOD is imperative for understanding the variation mechanism and controlling of organic pollution in water. In this study, a hybrid approach suitable for Sentinel 3A/Ocean and Land Colour Instrument (OLCI) data was developed to estimate CCOD in inland optically complex waters embedding the interaction between CCOD and the absorption coefficients of optically active constituents (OACs). Based on in-situ sampling in different waters, the independent validations of the proposed model performed satisfactorily in Lake Taihu (MAPE = 23.52 %, RMSE = 0.95 mg/L, and R2 = 0.81), Lake Qiandaohu (MAPE = 21.63 %, RMSE = 0.50 mg/L and R2 = 0.69), and Yangtze River (MAPE = 29.34 %, RMSE = 0.83 mg/L, and R2 = 0.64). In addition, the approach not only showed significant superiority compared with previous algorithms, but also was suitable for other common satellite sensors equipped same or similar bands. The hybrid approach was applied to OLCI images to retrieve CCOD of Lake Taihu from 2016 to 2020 and reveals substantial interannual and seasonal variations. The above results indicate that the proposed approach is effective and stable for studying spatiotemporal dynamic of CCOD in optically complex waters, and that satellite-derived products can provide reliable information for lake water quality management.


Assuntos
Lagos , Tecnologia de Sensoriamento Remoto , Análise da Demanda Biológica de Oxigênio , Monitoramento Ambiental/métodos , Qualidade da Água , China
13.
World J Surg Oncol ; 10: 112, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22713669

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) is an aggressive disease with poor prognosis. The expression of cytokine-induced apoptosis inhibitor 1 (CIAPIN1) correlates with the malignant progression of several cancers. However, the relationship between the subcellular localization of CIAPIN1 and clinical characteristics in EOC remains unclear. METHODS: Immunohistochemistry was performed to detect CIAPIN1 expression in 108 EOC tissues. CIAPIN1 expressions in eight fresh EOC tissues were detected by Western blotting. The relationship between CIAPIN1 subcellular expression and patients' clinicopathological features, including prognosis, was evaluated. Immunohistochemistry and immunofluorescence were employed to assess the CIAPIN1 subcellular localization in the EOC cell lines A2780 and HO8910. In addition, all patients were followed up to assess the prognostic value of CIAPIN1 in patients with EOC. RESULTS: CIAPIN1 is highly expressed in EOC, but is present at low levels in paired non-cancerous ovarian epithelial tissues. The results of Western blotting were in accordance with the immunohistochemical results. Poor differentiation of the tumors and EOC cell lines correlated with higher levels of CIAPIN1 nuclear expression. CIAPIN1 nuclear expression significantly correlated with the Federation International of Gynecology and Obstetrics (FIGO) stage and histological differentiation (P = 0.034 and P < 0.0001, respectively). Moreover, nuclear localization of CIAPIN1 was selected as an unfavorable prognostic factor by both univariate and multivariate analyses ( P < 0.001). However, no significant correlations were observed between cytoplasmic localization of CIAPIN1 and clinicopathological parameters. CONCLUSIONS: CIAPIN1 might play a crucial role in the differentiation of EOC cells. Elevated expression of nuclear CIAPIN1 negatively correlated with the survival of EOC patients, suggesting that nuclear CIAPIN1 might serve as a prognostic biomarker for EOC patients.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Ovarianas/mortalidade , Adulto , Idoso , Carcinoma Epitelial do Ovário , Feminino , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/análise , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Modelos de Riscos Proporcionais , Resultado do Tratamento
14.
Environ Pollut ; 296: 118740, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34971740

RESUMO

Understanding the spatiotemporal dynamics of total dissolved phosphorus concentration (CTDP) and its regulatory factors is essential to improving our understanding of its impact on inland water eutrophication, but few studies have assessed this in eutrophic inland lakes due to a lack of suitable bio-optical algorithms allowing the use of remote sensing data. We developed a novel semi-analytical algorithm for this purpose and tested it in the eutrophic Lake Taihu, China. Our algorithm produced robust results with a mean absolute square percentage error of 29.65% and root mean square error of 9.54 µg/L. Meanwhile, the new algorithm demonstrates good portability to other waters with different optical properties and could be applied to various image data, including Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Ocean and Land Color Instrument (OLCI). Further analysis based on Geostationary Ocean Color Imager observations from 2011 to 2020 revealed a significant spatiotemporal heterogeneity of CTDP in Lake Taihu. Correlation analysis of the long-term trend between CTDP and driving factors demonstrated that air temperature is the dominant regulating factor in variations of CTDP. This study provides a novel algorithm allowing remote-sensing monitoring of CTDP in eutrophic lakes and can lead to new insights into the role of dissolved phosphorus in water eutrophication.


Assuntos
Lagos , Fósforo , Algoritmos , China , Monitoramento Ambiental , Eutrofização , Fósforo/análise
15.
Clin Cosmet Investig Dermatol ; 15: 1475-1483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935600

RESUMO

Purpose: The clinical and pathological data of patients with rhinofacial ulcers were retrospectively reviewed and analyzed to lay the foundation for standardized clinical treatment. Patients and Methods: We retrospectively analyzed the clinical data, etiology, pathological features, treatment methods, and prognosis of 243 patients with rhinofacial ulcers treated in the Departments of Otorhinolaryngology and Dermatology at six hospitals in Shandong Province, China from July 2014 to October 2021. The clinical characteristics and treatment methods of the rhinofacial ulcers were summarized to provide a basis for standardizing patients' diagnosis and treatment. Results: The male-to-female ratio of the 243 patients was 2.04:1, and their ages ranged from 25 to 91 years. The most common sites were the cheek, nasal dorsum, and upper lip. The common primary diseases were basal-cell carcinoma, squamous-cell carcinoma, and odontogenic fistula, but rare triggers played important roles in some cases, such as infection, autoimmune diseases, and adverse drug reactions. Surgical treatment was feasible for tumor ulcers; 71 patients with basal-cell carcinoma and 50 with squamous-cell carcinoma were treated with Mohs micrographic surgery. During the follow-up period of 1-84 months, most of the rhinofacial ulcers were cured, while natural killer/T-cell lymphoma, angiosarcoma, and melanoma were important causes of death. Conclusion: Various causes may lead to rhinofacial skin ulcers, and some cases lacking specificity of clinical manifestations are easily misdiagnosed in clinical practice. Histopathological biopsy is valuable for confirming the diagnosis, after which correct etiological treatment is very important.

16.
Adv Mater ; 34(8): e2108363, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34881463

RESUMO

Porous carbon has been widely used as an efficient host to encapsulate highly active molecular sulfur (S) in Li-S and Na-S batteries. However, for these sub-nanosized pores, it is a challenge to provide fully accessible sodium ions with unobstructed channels during cycling, particularly for high sulfur content. It is well recognized that solid interphase with full coverage over the designed architectures plays critical roles in promoting rapid charge transfer and stable conversion reactions in batteries, whereas constructing a high-ionic-conductivity solid interphase in the pores is very difficult. Herein, unique continuous carbonaceous pores are tailored, which can serve as multifunctional channels to encapsulate highly active S and provide fully accessible pathways for sodium ions. Solid sodium sulfide interphase layers are also realized in the channels, showing high Na-ion conductivity toward stabilizing the redox kinetics of the S cathode during charge/discharge processes. This systematically designed carbon-hosted sulfur cathode delivers superior cycling performance (420 mAh g-1 at 2 A g-1 after 2000 cycles), high capacity retention of ≈90% over 500 cycles at current density of 0.5 A g-1 , and outstanding rate capability (470 mAh g-1 at 5 A g-1 ) for room-temperature sodium-sulfur batteries.

17.
J Cancer ; 12(24): 7380-7389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003358

RESUMO

LncRNAs are reported to be involved in tumor proliferation, invasion and metastasis, and are considered as potential biomarkers and therapeutic targets for human cancer, including head and neck cancer. In this study, we screened the differentially low-expressed linc01513 by bioinformatic to detect its expression and biological effect on nasopharyngeal carcinoma (NPC). MTT was used to evaluate the effect of linc01513 on the proliferation of NPC cells. Wound healing assay was used to determine the cells migration ability. The matrix transwell was used to further detect the role of linc01513 in cell invasion. Western blot was used to detect the expression of epithelial-mesenchymal transformation (EMT)-induced transcription factors E-cadherin, vimentin and Slug. The results showed that silence of linc01513 could promoted the proliferation, migration and invasion of NPC cells. The in vivo experiment showed that overexpression of linc01513 could inhibit the volume and weight of xenograft tumors. Database prediction, RNA pull-down and RIP experiments suggested that linc01513 may play an anti-tumor effect by inhibiting PTBP1 protein level. It is suggested that linc01513 directly binds to PTBP1 protein and mediates the EMT process and malignant biological behavior of NPC cells, which provides a new molecular marker for the prognosis and treatment of NPC.

18.
Inflammation ; 44(5): 1961-1968, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33913051

RESUMO

Sweroside, as one of the main components of Swertia L. in Gentianaceae, has the effect of clearing heat and detoxifying. In previous studies, sweroside has been reported to have anti-inflammatory effect on LPS-induced inflammation by alleviating NF-κB signaling pathway. In this paper, we investigate the anti-inflammatory effects of sweroside by establishing LPS-induced acute lung injury (ALI) model in mice. Experimental results showed that sweroside could reduce the wet-to-dry ratio of the lung and inhibit MPO activity. In addition, it turned out that sweroside reduced pathological changes in lung tissue and the numbers of inflammatory cells. Moreover, sweroside significantly reduced the levels of inflammatory cytokines and down-regulated the NF-κB signaling pathway. And the results demonstrated that sweroside could increase the expression of SIRT1, and the protective effects of sweroside on LPS-induced ALI were reversed by SIRT1 inhibitor EX-527. In conclusion, sweroside can protect LPS-induced ALI mice through inhibiting inflammation.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/uso terapêutico , Glucosídeos Iridoides/uso terapêutico , Lipopolissacarídeos/toxicidade , Sirtuína 1/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Relação Dose-Resposta a Droga , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Glucosídeos Iridoides/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Gland Surg ; 10(3): 1010-1017, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33842245

RESUMO

BACKGROUND: Bioresorbable alloplastic implants have become desirable as a rigid buttress for reconstructing skull base defects. This study aimed to describe the use of a biodegradable plate (PolyMax RAPID) in skull base repair of endoscopic endonasal pituitary surgery and to investigate the clinical outcome and safety of this novel method. METHODS: Between January 2019 and January 2020, 22 patients with pituitary adenomas who underwent endoscopic skull base repair with a Polymax RAPID plate were included. After endonasal transsphenoidal surgery, a trimmed bioresorbable plate was placed in the position between the dura and the bone of the skull base to reconstruct the sellar floor and buttress the pituitary gland and sellar packing. The patient demographics, radiologic imaging, and postoperative outcomes were carefully reviewed. All patients were followed up by a routine nasal endoscopic assessment and radiologic examinations. RESULTS: The present study comprised 10 (45.5%) males and 12 (54.4%) females with an average age of 51.9 years. There were 7 (31.8%) growth hormone (GH) secreting adenomas, 2 (9.1%) thyroid stimulating hormone (TSH) secreting adenomas, and 13 (59.1%) non-functioning adenomas. Enlarged sellar floor and paranasal sinusitis were seen in 13 (59.1%) and 11 (50.0%) cases shown by preoperative computed tomography (CT) or magnetic resonance imaging (MRI), respectively. There were 6 (27.3%) grade-1 and 16 (72.7%) grade-0 cases by intraoperative cerebrospinal fluid (CSF) leak grading. None of these patients received lumbar drains postoperatively and no postoperative CSF rhinorrhea was detected in our series. The PolyMax RAPID plates which could be clearly identified on postoperative CT or sagittal T1-weighted MRI were shown to provide an ideal rigid buttress for sellar repair. CONCLUSIONS: The Polymax RAPID plate can be an optimal implant to achieve rigid repair of sellar floor defects after endonasal transsphenoidal pituitary surgery.

20.
Analyst ; 135(8): 2106-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20532351

RESUMO

Nanostructured porous cuprite (NPC) films were first prepared by a facile wet chemical process. The resulted cuprite film was then characterized by Raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), as well as static contact angle experiment. Electrochemical catalytic performance of the NPC film was also tested. The low detection limit was estimated to be 6.3 microM (S/N = 3), and the time required to reach 95% of the steady-state current was shorter than 10 s after the addition of nitrite, which demonstrated that the as deposited nanostructured cuprite film has both high catalytic sensitivity and fast current response in nitrite sensing. The self-supporting porous nanostructure and their good contact with the conducting substrate resulted in large specific area, structure stability and efficient transportation. The good electrocatalytic performance shows that the nanoparticle-assembled thin films with nanoporous structure and nanocrystallites have potential applications as electrocatalysis platforms in biosensors.


Assuntos
Cobre/química , Membranas Artificiais , Nitritos/análise , Catálise , Eletroquímica , Nanopartículas Metálicas/química , Porosidade , Soluções , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA