Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; : 107598, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059495

RESUMO

In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA sequencing, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence (CDS) of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.

2.
Transl Res ; 273: 1-15, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945255

RESUMO

Renal aging and the subsequent rise in kidney-related diseases are attributed to senescence in renal tubular epithelial cells (RTECs). Our study revealed that the abnormal expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of RNA N6-methyladenosine, is critically involved in cisplatin-induced renal tubular senescence. In cisplatin-induced senescence of RTECs, the promoter activity and transcription of IGF2BP3 is markedly suppressed. It was due to the down regulation of MYC proto-oncogene (MYC), which regulates IGF2BP3 transcription by binding to the putative site at 1852-1863 of the IGF2BP3 promoter. Overexpression of IGF2BP3 ameliorated cisplatin-induced renal tubular senescence in vitro. Mechanistic studies revealed that IGF2BP3 inhibits cellular senescence in RTECs by enhancing cyclin-dependent kinase 6 (CDK6) mRNA stability and increasing its expression. The inhibition effect of IGF2BP3 on tubular senescence is partially reversed by the knockdown of CDK6. Further, IGF2BP3 recruits nuclear cap binding protein subunit 1 (NCBP1) and inhibits CDK6 mRNA decay, by recognizing m6A modification. Specifically, IGF2BP3 recognizes m6A motif "GGACU" at nucleotides 110-114 in the 5' untranslated region (UTR) field of CDK6 mRNA. The involvement of IGF2BP3/CDK6 in alleviating tubular senescence was confirmed in a cisplatin-induced acute kidney injury (AKI)-to-chronic kidney disease (CKD) model. Clinical data also suggests an age-related decrease in IGF2BP3 and CDK6 levels in renal tissue or serum samples from patients. These findings suggest that IGF2BP3/CDK6 may be a promising target in cisplatin-induced tubular senescence and renal failure.

3.
Plant Physiol Biochem ; 206: 108302, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171134

RESUMO

Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Germinação/genética , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Mutagênese , Estresse Fisiológico/genética , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA