RESUMO
This study characterizes the pharmacodynamics of antimicrobial prophylaxis and sternal wound infections following cardiac surgery. Duration of surgery and cefazolin plasma concentration during wound closure were independently associated with surgical site infection at 30 days. Furthermore, a duration of surgery of >346 min and a total cefazolin closure concentration of <104 mg/liter were significant thresholds for an increased risk of infection. This study provides new data that informs dosing strategies for effective antimicrobial prophylaxis (AP) in patients undergoing cardiac surgery with cardiopulmonary bypass.
Assuntos
Anti-Infecciosos/uso terapêutico , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cefazolina/uso terapêutico , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção dos Ferimentos/prevenção & controle , Idoso , Antibioticoprofilaxia/métodos , Ponte Cardiopulmonar/efeitos adversos , Feminino , Humanos , Masculino , Infecção da Ferida Cirúrgica/microbiologia , Infecção dos Ferimentos/microbiologiaRESUMO
Objectives: Although clinical practice guidelines recommend standard cefazolin antimicrobial prophylaxis (AP) dosing for cardiac surgery, limited data exist as to whether adequate concentrations are achieved in this patient population. The goal of our study was to characterize intraoperative cefazolin concentrations particularly at wound closure with regards to maintaining target cefazolin closure concentrations ≥40 mg/L. Methods: Adults undergoing cardiac surgery with cardiopulmonary bypass (CPB) and receiving cefazolin AP according to protocol were studied. Blood samples were collected after the preoperative cefazolin dose, prior to intraoperative cefazolin doses and at wound closure. Intraoperative trough and closure concentrations were characterized and evaluated against a target threshold of ≥â40 mg/L (≥8 mg/L unbound, assuming 80% protein binding). Results: Fifty-five subjects (64.9â±â10.4 years, 89.7â±â16.5 kg, CLCR >50 mL/min/72 kg) completed the study. Total cefazolin concentrations were <40 mg/L in 40% (12 of 30) of intraoperative trough samples and 9.8% (5 of 51) of closure samples. Below-target concentrations at some time during surgery were documented in 30.9% (17 of 55) of subjects. In multivariate analyses, lower body weight (P = 0.027) and shorter duration of surgery (P = 0.045) were significant predictors of closure concentrations <40 mg/L. A total cefazolin exposure (preoperative and intraoperative doses) of ≥â7.6 mg/kgdosing weight for every hour of surgery (intermittent dosing) was required to achieve target closure concentrations. Conclusions: The standard cefazolin AP regimen was not reliable in maintaining target closure concentrations ≥40 mg/L in patients with normal renal function undergoing elective cardiac surgery with CPB. The findings supported a cefazolin AP regimen consisting of at least 2 g preoperatively and every 3 h during surgery.
Assuntos
Antibacterianos/administração & dosagem , Antibioticoprofilaxia , Ponte Cardiopulmonar , Cefazolina/administração & dosagem , Infecção da Ferida Cirúrgica/prevenção & controle , Idoso , Antibacterianos/sangue , Peso Corporal , Cefazolina/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecção da Ferida Cirúrgica/microbiologiaAssuntos
Antibacterianos/farmacocinética , Antibioticoprofilaxia/métodos , Bacteriemia/prevenção & controle , Ponte Cardiopulmonar/efeitos adversos , Cefazolina/administração & dosagem , Cirurgia Torácica/métodos , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Cefazolina/sangue , Cefazolina/farmacocinética , Humanos , Plasma/química , Resultado do TratamentoRESUMO
Dalbavancin, oritavancin and telavancin are semisynthetic lipoglycopeptides that demonstrate promise for the treatment of patients with infections caused by multi-drug-resistant Gram-positive pathogens. Each of these agents contains a heptapeptide core, common to all glycopeptides, which enables them to inhibit transglycosylation and transpeptidation (cell wall synthesis). Modifications to the heptapeptide core result in different in vitro activities for the three semisynthetic lipoglycopeptides. All three lipoglycopeptides contain lipophilic side chains, which prolong their half-life, help to anchor the agents to the cell membrane and increase their activity against Gram-positive cocci. In addition to inhibiting cell wall synthesis, telavancin and oritavancin are also able to disrupt bacterial membrane integrity and increase membrane permeability; oritavancin also inhibits RNA synthesis. Enterococci exhibiting the VanA phenotype (resistance to both vancomycin and teicoplanin) are resistant to both dalbavancin and telavancin, while oritavancin retains activity. Dalbavancin, oritavancin and telavancin exhibit activity against VanB vancomycin-resistant enterococci. All three lipoglycopeptides demonstrate potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis regardless of their susceptibility to meticillin, as well as Streptococcus spp. Both dalbavancin and telavancin are active against vancomycin-intermediate S. aureus (VISA), but display poor activity versus vancomycin-resistant S. aureus (VRSA). Oritavancin is active against both VISA and VRSA. Telavancin displays greater activity against Clostridium spp. than dalbavancin, oritavancin or vancomycin. The half-life of dalbavancin ranges from 147 to 258 hours, which allows for once-weekly dosing, the half-life of oritavancin of 393 hours may allow for one dose per treatment course, while telavancin requires daily administration. Dalbavancin and telavancin exhibit concentration-dependent activity and AUC/MIC (area under the concentration-time curve to minimum inhibitory concentration ratio) is the pharmacodynamic parameter that best describes their activities. Oritavancin's activity is also considered concentration-dependent in vitro, while in vivo its activity has been described by both concentration and time-dependent models; however, AUC/MIC is the pharmacodynamic parameter that best describes its activity. Clinical trials involving patients with complicated skin and skin structure infections (cSSSIs) have demonstrated that all three agents are as efficacious as comparators. The most common adverse effects reported with dalbavancin use included nausea, diarrhoea and constipation, while injection site reactions, fever and diarrhoea were commonly observed with oritavancin therapy. Patients administered telavancin frequently reported nausea, taste disturbance and insomnia. To date, no drug-drug interactions have been identified for dalbavancin, oritavancin or telavancin. All three of these agents are promising alternatives for the treatment of cSSSIs in cases where more economical options such as vancomycin have been ineffective, in cases of reduced vancomycin susceptibility or resistance, or where vancomycin use has been associated with adverse events.