Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 95(23): e0088221, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549979

RESUMO

Human and simian immunodeficiency virus (HIV and SIV) infections establish lifelong reservoirs of cells harboring an integrated proviral genome. Genome editing CRISPR-associated Cas9 nucleases, combined with SIV-specific guiding RNA (gRNA) molecules, inactivate integrated provirus DNA in vitro and in animal models. We generated RNA-guided Cas9 nucleases (RGNu) and nickases (RGNi) targeting conserved SIV regions with no homology in the human or rhesus macaque genome. Assays in cells cotransfected with SIV provirus and plasmids coding for RGNus identified SIV long terminal repeat (LTR), trans-activation response (TAR) element, and ribosome slip site (RSS) regions as the most effective at virus suppression; RGNi targeting these regions inhibited virus production significantly. Multiplex plasmids that coexpressed these three RGNu (Nu3), or six (three pairs) RGNi (Ni6), were more efficient at virus suppression than any combination of individual RGNu and RGNi plasmids. Both Nu3 and Ni6 plasmids were tested in lymphoid cells chronically infected with SIVmac239, and whole-genome sequencing was used to determine on- and off-target mutations. Treatment with these all-in-one plasmids resulted in similar levels of mutations of viral sequences from the cellular genome; Nu3 induced indels at the 3 SIV-specific sites, whereas for Ni6 indels were present at the LTR and TAR sites. Levels of off-target effects detected by two different algorithms were indistinguishable from background mutations. In summary, we demonstrate that Cas9 nickase in association with gRNA pairs can specifically eliminate parts of the integrated provirus DNA; also, we show that careful design of an all-in-one plasmid coding for 3 gRNAs and Cas9 nuclease inhibits SIV production with undetectable off-target mutations, making these tools a desirable prospect for moving into animal studies. IMPORTANCE Our approach to HIV cure, utilizing the translatable SIV/rhesus macaque model system, aims at provirus inactivation and its removal with the least possible off-target side effects. We developed single molecules that delivered either three truncated SIV-specific gRNAs along with Cas9 nuclease or three pairs of SIV-specific gRNAs (six individual gRNAs) along with Cas9 nickase to enhance efficacy of on-target mutagenesis. Whole-genome sequencing demonstrated effective SIV sequence mutation and inactivation and the absence of demonstrable off-target mutations. These results open the possibility to employ Cas9 variants that introduce single-strand DNA breaks to eliminate integrated proviral DNA.


Assuntos
DNA , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Provírus/genética , RNA Guia de Cinetoplastídeos/genética , Vírus da Imunodeficiência Símia/genética , Animais , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes , Células HEK293 , Humanos , Macaca mulatta/metabolismo , Mutagênese , Plasmídeos
2.
J Med Primatol ; 49(5): 269-279, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32905624

RESUMO

BACKGROUND: One approach for a functional HIV cure is to prevent transcription from integrated proviral DNA. A critical step in HIV transcription is the Tat protein interaction with the TAR element viral RNA. We tested the strategy of blocking this Tat-TAR interaction in the SIVmac model. METHODS: We designed five CRISPR short guiding RNAs (sgRNAs) targeting the SIVmac TAR element, along with inactive versions of Cas9 (dCas9). These sgRNA constructs were delivered as ribonucleoproteins or plasmid DNA, along with SIV DNA. The constructs were also tested in integrated viral DNA in a cell line chronically infected by SIV. RESULTS: The sgRNAs targeting the coding strand of the TAR element inhibited SIV RNA transcription in association with dCas9-KRAB, but not with dCas9. CONCLUSIONS: Induction of epigenetic modifications may be more effective in inactivating provirus than transcriptional interference and thus may be a better strategy to achieve a functional cure in vivo.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Viral/genética , Inativação Gênica , Repetição Terminal Longa de HIV/genética , Provírus/genética , Vírus da Imunodeficiência Símia/genética , Células HEK293 , Humanos
3.
Front Cell Infect Microbiol ; 12: 880860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493734

RESUMO

Nonhuman primates (NHP) are particularly important for modeling infections with viruses that do not naturally replicate in rodent cells. Zika virus (ZIKV) has been responsible for sporadic epidemics, but in 2015 a disseminated outbreak of ZIKV resulted in the World Health Organization declaring it a global health emergency. Since the advent of this last epidemic, several NHP species, including the baboon, have been utilized for modeling and understanding the complications of ZIKV infection in humans; several health issues related to the outcome of infection have not been resolved yet and require further investigation. This study was designed to validate, in baboons, the molecular signatures that have previously been identified in ZIKV-infected humans and macaque models. We performed a comprehensive molecular analysis of baboons during acute ZIKV infection, including flow cytometry, cytokine, immunological, and transcriptomic analyses. We show here that, similar to most human cases, ZIKV infection of male baboons tends to be subclinical, but is associated with a rapid and transient antiviral interferon-based response signature that induces a detectable humoral and cell-mediated immune response. This immunity against the virus protects animals from challenge with a divergent ZIKV strain, as evidenced by undetectable viremia but clear anamnestic responses. These results provide additional support for the use of baboons as an alternative animal model to macaques and validate omic techniques that could help identify the molecular basis of complications associated with ZIKV infections in humans.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Imunidade Celular , Masculino , Papio , Viremia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA