Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(20): 207401, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657862

RESUMO

Moiré excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter in unprecedented regimes of interaction strength. We explore the properties in this regime, through studies of a Bose-Hubbard model of excitons coupled to cavity photons. We show that the steady states exhibit a rich phase diagram with pronounced bistabilities governed by multiphoton resonances reflecting the strong interexciton interactions. In the presence of an incoherent pumping of excitons we find that the system can realize single- and multiphoton lasers.

2.
Phys Rev Lett ; 126(1): 017401, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480782

RESUMO

The quest to realize strongly interacting photons remains an outstanding challenge both for fundamental science and for applications. Here, we explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton polaritons in a semiconductor microcavity. Using a theory that takes into account nonperturbative correlations between the excitons as well as strong light-matter coupling, we demonstrate the high tunability of an effective interaction between quasiparticles formed by minority component polaritons interacting with a Bose-Einstein condensate (BEC) of a majority component polaritons. In particular, the interaction, which is mediated by sound modes in the BEC can be made strong enough to support a bound state of two quasiparticles. Since these quasiparticles consist partly of photons, this in turn corresponds to a dimer state of photons propagating through the BEC. This gives rise to a new light transmission line where the dimer wave function is directly mapped onto correlations between the photons. Our findings open new routes for highly nonlinear optical materials and novel hybrid light-matter quantum systems.

3.
Phys Rev Lett ; 125(3): 035301, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745417

RESUMO

We develop a theory for the interaction of light with superfluid optical media, describing the motion of quantum impurities that are created and dragged through the liquid by propagating photons. It is well known that a mobile impurity suffers dissipation due to phonon emission as soon as it moves faster than the speed of sound in the superfluid-Landau's critical velocity. Surprisingly we find that in the present hybrid light-matter setting, polaritonic impurities can be protected against environmental decoherence and be allowed to propagate well above the Landau velocity without jeopardizing the superfluid response of the medium.

4.
Phys Rev Lett ; 121(1): 013401, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028169

RESUMO

Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory an effective Schrödinger equation describing this for an arbitrarily strong impurity-boson interaction. We furthermore compare with quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments, and we describe a procedure to probe their properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA