RESUMO
Work in the catshark Scyliorhinus canicula has shown that the evolutionary origin of postnatal neurogenesis in vertebrates is earlier than previously thought. Thus, the catshark can serve as a model of interest to understand postnatal neurogenic processes and their evolution in vertebrates. One of the best characterized neurogenic niches of the catshark CNS is found in the peripheral region of the retina. Unfortunately, the lack of genetic tools in sharks limits the possibilities to deepen in the study of genes involved in the neurogenic process. Here, we report a method for gene knockdown in the juvenile catshark retina based on the use of Vivo-Morpholinos. To establish the method, we designed Vivo-Morpholinos against the proliferation marker PCNA. We first evaluated the possible toxicity of 3 different intraocular administration regimes. After this optimization step, we show that a single intraocular injection of the PCNA Vivo-Morpholino decreases the expression of PCNA in the peripheral retina, which leads to reduced mitotic activity in this region. This method will help in deciphering the role of other genes potentially involved in postnatal neurogenesis in this animal model.
Assuntos
Tubarões , Animais , Tubarões/genética , Tubarões/metabolismo , Morfolinos/genética , Morfolinos/farmacologia , Morfolinos/metabolismo , Técnicas de Silenciamento de Genes , Antígeno Nuclear de Célula em Proliferação/genética , Retina/metabolismoRESUMO
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. While there is a major focus on the study of juvenile/adult DR, the effects of hyperglycemia during early retinal development are less well studied. Recent studies in embryonic zebrafish models of nutritional hyperglycemia (high-glucose exposure) have revealed that hyperglycemia leads to decreased cell numbers of mature retinal cell types, which has been related to a modest increase in apoptotic cell death and altered cell differentiation. However, how embryonic hyperglycemia impacts cell proliferation in developing retinas still remains unknown. Here, we exposed zebrafish embryos to 50 mM glucose from 10 h postfertilization (hpf) to 5 days postfertilization (dpf). First, we confirmed that hyperglycemia increases apoptotic death and decreases the rod and Müller glia population in the retina of 5-dpf zebrafish. Interestingly, the increase in cell death was mainly observed in the ciliary marginal zone (CMZ), where most of the proliferating cells are located. To analyze the impact of hyperglycemia in cell proliferation, mitotic activity was first quantified using pH3 immunolabeling, which revealed a significant decrease in mitotic cells in the retina (mainly in the CMZ) at 5 dpf. A significant decrease in cell proliferation in the outer nuclear and ganglion cell layers of the central retina in hyperglycemic animals was also detected using the proliferation marker PCNA. Overall, our results show that nutritional hyperglycemia decreases cellular proliferation in the developing retina, which could significantly contribute to the decline in the number of mature retinal cells.
Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Proliferação de Células , Glucose/metabolismo , Hiperglicemia/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Retina/metabolismoRESUMO
To identify the putative amygdalar complex in cartilaginous fishes, our first step was to obtain evidence that supports the existence of a pallial amygdala in the catshark Scyliorhinus canicula, at present the prevailing chondrichthyan model in comparative neurobiology and developmental biology. To this end, we analyzed the organization of the lateral walls of the telencephalic hemispheres of adults, juveniles, and early prehatching embryos by immunohistochemistry against tyrosine hydroxylase (TH), somatostatin (SOM), Pax6, serotonin (5HT), substance P (SP), and Met-enkephalin (MetEnk), calbindin-28k (CB), and calretinin (CR), and by in situ hybridization against regulatory genes such as Tbr1, Lhx9, Emx1, and Dlx2. Our data were integrated with those available from the literature related to the secondary olfactory projections in this shark species. We have characterized two possible amygdalar territories. One, which may represent a ventropallial component, was identified by its chemical signature (moderate density of Pax6-ir cells, scarce TH-ir and SOM-ir cells, and absence of CR-ir and CB-ir cells) and gene expressions (Tbr1 and Lhx9 expressions in an Emx1 negative domain, as the ventral pallium of amniotes). It is perhaps comparable to the lateral amygdala of amphibians and the pallial amygdala of teleosts. The second was a territory related to the pallial-subpallial boundary with abundant Pax6-ir and CR-ir cells, and 5HT-ir, SP-ir, and MetEnk-ir fibers capping dorsally the area superficialis basalis. This olfactory-related region at the neighborhood of the pallial-subpallial boundary may represent a subpallial amygdala subdivision that possibly contains migrated cells of ventropallial origin.
Assuntos
Tonsila do Cerebelo , Telencéfalo , Animais , Calbindinas/metabolismo , Córtex Cerebral/metabolismo , Hibridização In Situ , Serotonina , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
It is largely assumed that the teleost retina shows continuous and active proliferative and neurogenic activity throughout life. However, when delving into the teleost literature, one finds that assumptions about a highly active and continuous proliferation in the adult retina are based on studies in which proliferation was not quantified in a comparative way at the different life stages or was mainly studied in juveniles/young adults. Here, we performed a systematic and comparative study of the constitutive proliferative activity of the retina from early developing (2 days post-fertilisation) to aged (up to 3-4 years post-fertilisation) zebrafish. The mitotic activity and cell cycle progression were analysed by using immunofluorescence against pH3 and PCNA, respectively. We observed a decline in the cell proliferation in the retina with ageing despite the occurrence of a wave of secondary proliferation during sexual maturation. During this wave of secondary proliferation, the distribution of proliferating and mitotic cells changes from the inner to the outer nuclear layer in the central retina. Importantly, in aged zebrafish, there is a virtual disappearance of mitotic activity. Our results showing a decline in the proliferative activity of the zebrafish retina with ageing are of crucial importance since it is generally assumed that the fish retina has continuous proliferative activity throughout life.
Assuntos
Envelhecimento/fisiologia , Mitose , Retina/fisiologia , Peixe-Zebra/fisiologia , Animais , Retina/citologiaRESUMO
The output of the cerebellar cortex is mainly released via cerebellar nuclei which vary in number and complexity among gnathostomes, extant vertebrates with a cerebellum. Cartilaginous fishes, a basal gnathostome lineage, show a conspicuous, well-organized cerebellar nucleus, unlike ray-finned fishes. To gain insight into the evolution and development of the cerebellar nucleus, we analyzed in the shark Scyliorhinus canicula (a chondrichthyan model species) the developmental expression of several genes coding for transcription factors (ScLhx5,ScLhx9,ScTbr1, and ScEn2) and the distribution of the protein calbindin, since all appear to be involved in cerebellar nuclei patterning in other gnathostomes. Three regions (subventricular, medial or central, and lateral or superficial) became recognizable in the cerebellar nucleus of this shark during development. Present genoarchitectonic and neurochemical data in embryos provide insight into the origin of the cerebellar nucleus in chondrichthyans and support a tripartite mediolateral organization of the cerebellar nucleus, as previously described in adult sharks. Furthermore, the expression pattern of ScLhx5,ScLhx9, and ScTbr1 in this shark, together with that of markers of proliferation, migration, and early differentiation of neurons, is compatible with the hypothesis that, as in mammals, different subsets of cerebellar nucleus neurons are originated from progenitors of 2 different sources: the ventricular zone of the cerebellar plate and the rhombic lip. We also present suggestive evidence that Lhx9 expression is involved in cerebellar nuclei patterning early on in gnathostome evolution, rather than representing an evolutionary innovation of the dentate nucleus in mammals, as previously hypothesized.
Assuntos
Evolução Biológica , Calbindinas/metabolismo , Núcleos Cerebelares , Cação (Peixe) , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Calbindinas/genética , Núcleos Cerebelares/embriologia , Núcleos Cerebelares/metabolismo , Cação (Peixe)/embriologia , Cação (Peixe)/genética , Cação (Peixe)/metabolismo , Proteínas de Peixes/genéticaRESUMO
Doublecortin (DCX) is a microtubule-associated protein that has been considered a marker for neuronal precursors and young migrating neurons during the development of the central nervous system and in adult neurogenic niches. The retina of fishes represents an accessible, continuously growing and highly structured (layered) part of the central nervous system and, therefore, offers an exceptional model to extend our knowledge on the possible role of DCX in promoting neurogenesis and migration to appropriate layers. We have analyzed the distribution of DCX in the embryonic and postembryonic retina of a small shark, the lesser spotted dogfish Scyliorhinus canicula, by means of immunohistochemistry. We investigated the relationship between DCX expression and the neurogenic state of DCX-labeled cells by exploring its co-localization with the proliferation marker PCNA (proliferating cell nuclear antigen) and the marker of neuronal differentiation HuC/D. Since radially migrating neurons use radial glial fibers as substrate, we explored the possible correlation between DCX expression and cell migration along radial glia by comparing its expression with that of the glial marker GFAP (glial fibrillary acidic protein). Additionally, we characterized DCX-expressing cells by double immunocytochemistry using antibodies against Calbindin (a marker for mature bipolar and horizontal cells in this species) and Pax6, which has been proposed as a regulator of cell proliferation, cell differentiation, and neuron diversification in the neural retina of sharks. Strong DCX immunoreactivity was observed in immature cells and cell processes, at a time when retinal cells were not yet organized into different laminae. DCX was also found in subsets of mature ganglion, amacrine, bipolar and horizontal cells long after they had exited the cell cycle, a pattern that was maintained in juveniles and adults. Our results on DCX expression in the retina are compatible with a role for DCX in cell migration within the immature retina, and in dynamic neuronal plasticity in the mature retina. We also provide evidence of DCX expression in discrete cells in the retinal pigment epithelium of prehatching embryos and juveniles, which suggest that retinal pigmented epithelial cells in sharks, as in mammals, have an intrinsic capacity to proliferate and differentiate into cells with neural identity.
Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/fisiologia , Neuropeptídeos/metabolismo , Retina/embriologia , Retina/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular , Proliferação de Células/fisiologia , Cação (Peixe) , Proteínas do Domínio Duplacortina , Técnica Indireta de Fluorescência para Anticorpo , Proteína Glial Fibrilar Ácida/metabolismo , Plasticidade Neuronal/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismoRESUMO
The nervus terminalis (or terminal nerve) system was discovered in an elasmobranch species more than a century ago. Over the past century, it has also been recognized in other vertebrate groups, from agnathans to mammals. However, its origin, functions or relationship with the olfactory system are still under debate. Despite the abundant literature about the nervus terminalis system in adult elasmobranchs, its development has been overlooked. Studies in other vertebrates have reported newly differentiated neurons of the terminal nerve system migrating from the olfactory epithelium to the telencephalon as part of a 'migratory mass' of cells associated with the olfactory nerve. Whether the same occurs in developing elasmobranchs (adults showing anatomically separated nervus terminalis and olfactory systems) has not yet been determined. In this work we characterized for the first time the development of the terminal nerve and ganglia in an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula), by means of tract-tracing techniques combined with immunohistochemical markers for the terminal nerve (such as FMRF-amide peptide), for the developing components of the olfactory system (Gα0 protein, GFAP, Pax6), and markers for early postmitotic neurons (HuC/D) and migrating immature neurons (DCX). We discriminated between embryonic olfactory and terminal nerve systems and determined that both components may share a common origin in the migratory mass. We also localized the exact point where they split off near the olfactory nerve-olfactory bulb junction. The study of the development of the terminal nerve system in a basal gnathostome contributes to the knowledge of the ancestral features of this system in vertebrates, shedding light on its evolution and highlighting the importance of elasmobranchs for developmental and evolutionary studies.
Assuntos
Neurônios/citologia , Nervo Olfatório/embriologia , Condutos Olfatórios/embriologia , Tubarões/embriologia , Telencéfalo/embriologia , Animais , Nervo Olfatório/citologia , Condutos Olfatórios/citologia , Telencéfalo/citologiaRESUMO
Pax6 is involved in the control of neuronal specification, migration, and differentiation in the olfactory epithelium and in the generation of different interneuron subtypes in the olfactory bulb. Whether these roles are conserved during evolution is not known. Cartilaginous fish are extremely useful models for assessing the ancestral condition of brain organization because of their phylogenetic position. To shed light on the evolution of development of the olfactory system in vertebrates and on the involvement of Pax6 in this process, we analyzed by in situ hybridization and immunohistochemistry the expression pattern of Pax6 in the developing olfactory system in a basal vertebrate, the lesser spotted dogfish Scyliorhinus canicula. This small shark is becoming an important fish model in studies of vertebrate development. We report Pax6 expression in cells of the olfactory epithelium and olfactory bulb, and present the first evidence in vertebrates of strings of Pax6-expressing cells extending along the developing olfactory nerve. The results indicate the olfactory epithelium as the origin of these cells. These data are compatible with a role for Pax6 in the development of the olfactory epithelium and fibers, and provide a basis for future investigations into the mechanisms that regulate development of the olfactory system throughout evolution.
Assuntos
Cação (Peixe)/genética , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Nervo Olfatório/metabolismo , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Animais , Cação (Peixe)/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Fator de Transcrição PAX6RESUMO
Pax6 is a highly conserved transcription factor that appears involved in the entire process of retinogenesis, including maintenance of proliferation of retinal progenitors and differentiation of particular neuron fates. To gain insight into the retinogenesis in fish, we study the dynamics of Pax6 expression in the developing and mature retina of two sharks that inhabit in particular environments, and compare it with the dynamics of a marker of cell proliferation (proliferating cell nuclear antigen, PCNA) and markers of neuronal differentiation, such as glutamic acid decarboxylase (GAD), calretinin (CR), tyrosine-hydroxylase, and serotonin (5-HT). Our results reveal that Pax6 is expressed in PCNA-immunoreactive cells within the nonlayered retina, suggesting a role for Pax6 in proliferating progenitors. Pax6 expression decays as development proceeds and eventually remains in some postmitotic cells, which points to additional roles of Pax6 following neurogenesis. Double immunofluorescence reveals Pax6/CR colocalization in the ganglion cell layer, Pax6/5-HT in the inner part of the inner nuclear layer (INLi), and Pax6/GAD in the INLi and horizontal cell layer. Our results suggest that Pax6 may contribute to neuron diversification in the neural retina.
Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/citologia , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Retina/metabolismo , Animais , Imunofluorescência , Hibridização In Situ , Neurônios/metabolismo , Fator de Transcrição PAX6 , Retina/crescimento & desenvolvimentoRESUMO
The basic anatomy of the elasmobranch brain has been previously established after studying the organization of the different subdivisions in the adult brain. However, despite the relatively abundant immunohistochemical and hodologic studies performed in different species of sharks and skates, the organization of some brain subdivisions remains unclear. The present study focuses on some brain regions in which subdivisions established on the basis of anatomical data in adults remain controversial, such as the subpallium, mainly the striatal subdivision. Taking advantage of the great potential of the lesser spotted dogfish, Scyliorhinus canicula, as a model for developmental studies, we have characterized the subpallium throughout development and postembryonic stages by analyzing the distribution of immunomarkers for GABA, catecholamines, and neuropeptides, such as substance P. Moreover, we have analyzed the expression pattern of regulatory genes involved in the regionalization of the telencephalon, such as Dlx2, Nkx2.1, and Shh, and followed their derivatives throughout development in relation to the distribution of such neurochemical markers. For further characterization, we have also analyzed the patterns of innervation of the subpallium after applying tract-tracing techniques. Our observations may shed light on postulate equivalences of regions and nuclei among elasmobranchs and support homologies with other vertebrates.
Assuntos
Gânglios da Base , Encéfalo , Cação (Peixe) , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Animais Recém-Nascidos , Gânglios da Base/embriologia , Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Mapeamento Encefálico , Catecolaminas/metabolismo , Cação (Peixe)/anatomia & histologia , Cação (Peixe)/embriologia , Cação (Peixe)/crescimento & desenvolvimento , Embrião não Mamífero , Proteínas do Olho/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.
RESUMO
Ocular health may strongly benefit from the supply of antioxidant agents that counteract free radicals and reactive oxygen species responsible for long-term eye diseases. Additionally, natural antioxidants like resveratrol can inhibit bacteria growth and restore natural microbiota. However, their use is hindered by limited solubility, fast degradation, and low ocular permeability. This work aimed to overcome these limitations by preparing single and mixed micelles of Pluronic® F127 and casein that serve as resveratrol nanocarriers. Single and mixed (0.1 % casein) micelles (0.0 to -17.0 mV; 2.4 to 32.7 nm) increased 50-fold resveratrol solubility, remained stable for one month at 4 °C, withstood fast dilution, underwent sol-to-gel transitions in the 23.9-27.1 °C range, and exhibited potent antioxidant properties. All formulations successfully passed the HET-CAM assay but showed Pluronic®-casein dose-dependent toxicity in the zebrafish embryo model. Resveratrol-loaded single and mixed micelles (10-15 mM Pluronic® F127) displayed antimicrobial activity against S. aureus and P. aeruginosa. The micelles favored resveratrol accumulation in cornea and sclera, but mixed micelles showed larger lag times and provided lower amount of resveratrol permeated through sclera. In vivo (rabbit) tests confirmed the safety of resveratrol-loaded single micelles and their capability to supply resveratrol to anterior and posterior eye segments.
Assuntos
Micelas , Poloxâmero , Animais , Coelhos , Poloxâmero/metabolismo , Resveratrol , Caseínas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Staphylococcus aureus , Peixe-Zebra , Córnea/metabolismo , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/metabolismoRESUMO
Neurogenesis is the process by which progenitor cells generate new neurons. As development progresses neurogenesis becomes restricted to discrete neurogenic niches, where it persists during postnatal life. The retina of teleost fishes is thought to proliferate and produce new cells throughout life. Whether this capacity may be an ancestral characteristic of gnathostome vertebrates is completely unknown. Cartilaginous fishes occupy a key phylogenetic position to infer ancestral states fixed prior to the gnathostome radiation. Previous work from our group revealed that the juvenile retina of the catshark Scyliorhinus canicula, a cartilaginous fish, shows active proliferation and neurogenesis. Here, we compared the morphology and proliferative status of the retina in catshark juveniles and adults. Histological and immunohistochemical analyses revealed an important reduction in the size of the peripheral retina (where progenitor cells are mainly located), a decrease in the thickness of the inner nuclear layer (INL), an increase in the thickness of the inner plexiform layer and a decrease in the cell density in the INL and in the ganglion cell layer in adults. Contrary to what has been reported in teleost fish, mitotic activity in the catshark retina was virtually absent after sexual maturation. Based on these results, we carried out RNA-Sequencing (RNA-Seq) analyses comparing the retinal transcriptome of juveniles and adults, which revealed a statistically significant decrease in the expression of many genes involved in cell proliferation and neurogenesis in adult catsharks. Our RNA-Seq data provides an excellent resource to identify new signaling pathways controlling neurogenesis in the vertebrate retina.
RESUMO
The calcium-binding protein calretinin (CR) has been widely used as a marker of neuronal differentiation. In the present study we analyzed the distribution of CR-immunoreactive (CR-ir) elements in the embryonic and postembryonic retina of two elasmobranchs, the lesser spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus). We compared the distribution of CR with that of a proliferation marker (the proliferating cell nuclear antigen, PCNA) in order to investigate the time course of CR expression during retinogenesis and explored the relationship between CR and glutamic acid decarboxylase (GAD), the synthesizing enzyme of the gamma-aminobutyric acid (GABA), which has been reported to play a role in shark retinogenesis. The earliest CR immunoreactivity was concurrently observed in subsets of: a) ganglion cells in the ganglion cell layer; b) displaced ganglion cells in the inner plexiform layer and inner part of the inner nuclear layer (INLi); c) amacrine cells in the INLi, and d) horizontal cells. This pattern of CR distribution is established in the developing retina from early stage 32, long after the appearance of a layered retinal organization in the inner retina, and coinciding with photoreceptor maturation in the outer retina. We also demonstrated that CR is expressed in postmitotic cells long after they have exited the cell cycle and in a subset of GABAergic horizontal cells. Overall our results provide insights into the differentiation patterns in the elasmobranch retina and supply further comparative data on the development of CR distribution in the retina of vertebrates. This study may help in understanding the possible involvement of CR in aspects of retinal morphogenesis.
Assuntos
Proliferação de Células , Cação (Peixe)/embriologia , Glutamato Descarboxilase/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Retina/embriologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células Amácrinas/metabolismo , Animais , Biomarcadores/metabolismo , Calbindina 2 , Diferenciação Celular , Cação (Peixe)/crescimento & desenvolvimento , Técnica Indireta de Fluorescência para Anticorpo , Técnicas Imunoenzimáticas , Retina/crescimento & desenvolvimento , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismoRESUMO
Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5, and PSST6) have been recently identified in elasmobranchs (Tostivint et al., General and Comparative Endocrinology, 2019, 279, 139-147). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the central nervous system (CNS) of Scyliorhinus canicula using in situ hybridization. Additionally, we combined in situ hybridization with tyrosine hydroxylase (TH) immunochemistry for better characterization of PSST1 and PSST6 expressing populations. We observed differential expression of PSST1 and PSST6, which are the most widely expressed PSST transcripts, in cell populations of many CNS regions, including the pallium, subpallium, hypothalamus, diencephalon, optic tectum, midbrain tegmentum, and rhombencephalon. Interestingly, numerous small pallial neurons express PSST1 and PSST6, although in different populations judging from the colocalization of TH immunoreactivity and PSST6 expression but not with PSST1. We observed expression of PSST1 in cerebrospinal fluid-contacting (CSF-c) neurons of the hypothalamic paraventricular organ and the central canal of the spinal cord. Unlike PSST1 and PSST6, PSST2, and PSST3 are only expressed in cells of the hypothalamus and in some hindbrain lateral reticular neurons, and PSST5 in cells of the region of the entopeduncular nucleus. Comparative data of brain expression of PSST genes indicate that the somatostatinergic system of sharks is the most complex reported in any fish.
Assuntos
Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Tubarões/metabolismo , Somatostatina/metabolismo , Transcriptoma , AnimaisRESUMO
Neurogenesis is a multistep process by which progenitor cells become terminally differentiated neurons. Adult neurogenesis has gathered increasing interest with the aim of developing new cell-based treatments for neurodegenerative diseases in humans. Active sites of adult neurogenesis exist from fish to mammals, although in the adult mammalian brain the number and extension of neurogenic areas is considerably reduced in comparison to non-mammalian vertebrates and they become mostly reduced to the telencephalon. Much of our understanding in this field is based in studies on mammals and zebrafish, a modern bony fish. The use of the cartilaginous fish Scyliorhinus canicula (representative of basal gnathostomes) as a model expands the comparative framework to a species that shows highly neurogenic activity in the adult brain. In this work, we studied the proliferation pattern in the telencephalon of juvenile and adult specimens of S. canicula using antibodies against the proliferation marker proliferating cell nuclear antigen (PCNA). We have characterized proliferating niches using stem cell markers (Sex determining region Y-box 2), glial markers (glial fibrillary acidic protein, brain lipid binding protein and glutamine synthase), intermediate progenitor cell markers (Dlx2 and Tbr2) and markers for migrating neuroblasts (Doublecortin). Based in the expression pattern of these markers, we demonstrate the existence of different cell subtypes within the PCNA immunoreactive zones including non-glial stem cells, glial progenitors, intermediate progenitor-like cells and migratory neuroblasts, which were widely distributed in the ventricular zone of the pallium, suggesting that the main progenitor types that constitute the neurogenic niche in mammals are already present in cartilaginous fishes.
Assuntos
Proteínas de Peixes/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Tubarões/crescimento & desenvolvimento , Telencéfalo/crescimento & desenvolvimento , Animais , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição SOX/metabolismo , Tubarões/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição/metabolismoRESUMO
We studied the ontogeny and organization of GABAergic cells in the retina of two elasmobranches, the lesser-spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus) by using immunohistochemistry for gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). Both antibodies revealed the same pattern of immunoreactivity and both species showed similar organization of GABAergic cells. GABAergic cells were first detected in neural retina of embryos at stage 26, which showed a neuroepithelial appearance without any layering. In stages 27-29 the retina showed similar organization but the number of neuroblastic GABAergic cells increased. When layering became apparent in the central retina (stage-30 embryos), GABAergic cells mainly appeared organized in the outer and inner retina, and GABAergic processes and fibres were seen in the primordial inner plexiform layer (IPL), optic fibre layer and optic nerve stalk. In stage-32 embryos, layering was completed in the central retina, where immunoreactivity appeared in perikarya of the horizontal cell layer, inner nuclear layer and ganglion cell layer, and in numerous processes coursing in the IPL, optic fibre layer and optic nerve. From stage 32 to hatching (stage 34), the layered retina extends from centre-to-periphery, recapitulating that observed in the central retina at earlier stages. In adults, GABA/GAD immunoreactivity disappears from the horizontal cell layer except in the marginal retina. Our results indicate that the source of GABA in the shark retina can be explained by its synthesis by GAD. Such synthesis precedes layering and synaptogenesis, thus supporting a developmental role for GABA in addition to act as neurotransmitter and neuromodulator.
Assuntos
Neurônios/citologia , Retina/embriologia , Tubarões/embriologia , Ácido gama-Aminobutírico/metabolismo , Animais , Anticorpos , Embrião não Mamífero , Glutamato Descarboxilase/metabolismo , Neurônios/metabolismo , Retina/metabolismoRESUMO
Gamma-aminobutyric acid (GABA) has been implicated in cell proliferation and differentiation during development. In the present study, immunohistochemical techniques were used to investigate the development of the GABAergic system in the retina of the trout and its relation to markers of differentiation [calretinin (CR), and tyrosine hydroxylase (TH)]. The expression of Pax6, an eye-patterning protein involved in the proliferation and emergence of specific retinal cell types, was also studied. Retinal layering was observed to begin centrally in prehatching embryos, as the first GABAergic cells appeared in the ganglion cell layer (GCL) and inner part of the inner nuclear layer (INL). At hatching, GABAergic cells were also observed in the horizontal cell layer (HCL). In alevins, GABAergic cells and processes spread laterally following retinal growth although they did not invade neuroblastic retinal regions. CR- and Pax6-immunoreactive (ir) cells were first seen in the GCL and the inner part of the INL, whereas sparse TH-ir cells appeared in the INL. In juveniles, GABAergic cells were observed in the GCL, inner part of the INL and HCL, whereas CR-ir cells spread to the outer part of the INL and HCL. A subset of CR-ir in the GCL and of Pax6-ir cells in the GCL and INL showed colocalization with GABAergic markers. This study provides further comparative knowledge about the development of GABAergic system of the retina in teleosts and shows differences and similarities with that reported in fast-developing species such as zebrafish, in which retinal expression of GABA was transient in some populations.
Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Neurônios/fisiologia , Retina , Truta/anatomia & histologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Calbindina 2 , Embrião não Mamífero , Proteínas do Olho/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Retina/citologia , Retina/embriologia , Retina/crescimento & desenvolvimento , Proteína G de Ligação ao Cálcio S100/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas de Peixe-ZebraRESUMO
We have studied the patterns of cell proliferation, regional organization and differentiation in the cerebellar body of embryos and juveniles of two shark species by immunohistochemistry with antibodies against proliferating cell nuclear antigen (PCNA), Pax6, reelin (RELN), GABA, glutamic acid decarboxylase (GAD) and calretinin (CR). The organization of Pax6-expressing cells was also studied by in situ hybridization. Our results reveal that a transient secondary matrix zone, the external germinal layer, is formed in sharks at early stages of cerebellar development and is the source of the earliest Pax6-expressing (granule) cells. Later in development, new granule Pax6-expressing cells arise from medial proliferation zones and accumulate medially in the granular eminences. The GABAergic components appear very early, and show clear regional differences. The medial proliferation zones remain active even in adults. Taken together, the proliferation and differentiation markers used in the present study highlight striking similarities during development between the cerebellar body of elasmobranchs and the cerebella of tetrapods. These results show the importance of elasmobranch models to reconstruct the evolutionary developmental history of the vertebrate cerebellum.
Assuntos
Diferenciação Celular/fisiologia , Cerebelo/embriologia , Cerebelo/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Tubarões/embriologia , Tubarões/metabolismo , Animais , Evolução Biológica , Padronização Corporal/fisiologia , Calbindina 2 , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proliferação de Células , Cerebelo/citologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Hibridização In Situ , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Proteína Reelina , Proteínas Repressoras/genética , Proteína G de Ligação ao Cálcio S100/genética , Proteína G de Ligação ao Cálcio S100/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade da Espécie , Fatores de Tempo , Vertebrados/embriologia , Ácido gama-Aminobutírico/metabolismoRESUMO
Brain regionalization has been extensively studied in tetrapods, teleosts and cyclostomes. In contrast, it has not been investigated in elasmobranchs, despite their key phylogenetic position to understand brain evolution in jawed vertebrates. In this study we provide a schematic view of the segmental pattern of the developing shark brain based on mapping of the expression of Pax6 and neurochemical markers such as calretinin, tyrosine hydroxylase, serotonin, and glutamic acid decarboxylase. By correlating the cytoarchitectonic limits with the specific location of these markers, we identify transverse and longitudinal boundaries and domains, which suggest a segmental pattern, reminiscent of the one described in other vertebrates. Taken together, these data provide an initial scheme, which will be further tested and refined using a broader range of genetic markers involved in patterning and differentiation.