Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904314

RESUMO

To investigate the effect of perfluorinated substituent on the properties of anion exchange membranes (AEMs), cross-linked polynorbornene-based AEMs with perfluorinated branch chains were prepared via ring opening metathesis polymerization, subsequent crosslinking reaction, and quaternization. The crosslinking structure enables the resultant AEMs (CFnB) to exhibit a low swelling ratio, high toughness, and high water uptake, simultaneously. In addition, benefiting from the ion gathering and side chain microphase separation caused by their flexible backbone and perfluorinated branch chain, these AEMs had high hydroxide conductivity up to 106.9 mS cm-1 at 80 °C even at low ion content (IEC < 1.6 meq g-1). This work provides a new approach to achieve improved ion conductivity at low ion content by introducing the perfluorinated branch chains and puts forward a referable way to prepare AEMs with high performance.

2.
Polymers (Basel) ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177363

RESUMO

In order to study the failure mode and debonding behavior of the interface between BFRP (basalt fiber reinforced polymer) sheet and structural steel under mixed-mode loading conditions, eighteen specimens with different initial angles were tested in this study. The specimens were designed with different initial angles to ensure that the interface performed under mixed-mode loading conditions. The relations between the bond strengths, failure modes, and initial angles were investigated. A new evaluation method to predict the interfacial bond strength under shear-peeling loading mode was proposed. The test results show that specimens with a smaller initial angle are more likely to exhibit a shear debonding failure at the interface between the steel plate and adhesive. In contrast, specimens with a larger initial angle are more likely to exhibit peeling of the interface. The ultimate tensile strength of the specimen is higher with a smaller initial angle. The results predicted by the proposed method are in good agreement with the experimental results.

3.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501704

RESUMO

The concentrated transverse load may lead to the web crippling of pultruded GFRP sections due to the lower transverse mechanical properties. Several investigations have been conducted on the web-crippling behavior of the GFRP sections under room temperature. However, the web-crippling behavior is not yet understood when subjected to elevated temperatures. To address this issue, a finite element model considering the temperature-dependent material properties, Hashin failure criterion and the damage evolution law are successfully developed to simulate the web-crippling behavior of the GFRP I sections under elevated temperatures. The numerical model was validated by the web-crippling experiments at room temperature with the end-two-flange (ETF) and end bearing with ground support (EG) loading configurations. The developed model can accurately predict the ultimate loads and failure modes. Moreover, it was found that the initial damage was triggered by exceeding the shear strength at the web-flange junction near the corner of the bearing plate and independent of the elevated temperatures and loading configurations. The ultimate load and stiffness decreased obviously with the increasing temperature. At 220 °C, the ultimate load of specimens under ETF and EG loading configurations significantly decreased by 57% and 62%, respectively, whereas the elastic stiffness obviously reduced by 87% and 88%, respectively.

4.
ACS Omega ; 5(22): 13148-13157, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548501

RESUMO

This contribution is an attempt to explore the effectiveness of a series of newly obtained thermoplastic elastomers (TPEs) as a toughening agent for modifying poly(lactic acid) (PLA). The TPEs, including ionically modified isotactic polypropylene-graft-PLA (iPP-g-PLA) copolymers with explicit graft length, graft density, and ionic group content, and an iPP-g-PLA copolymer with a very high molecular weight and explicit graft density, were elaborately designed and synthesized. The semicrystal or rubbery copolymer backbone originated from iPP was designed to improve the toughness and maintain a relatively high strength, while the grafted PLA side chain was to ensure a high level of compatibility with the PLA matrix. To obtain further enhancement in interfacial reinforcement, the imidazolium-based ionic group was also added during graft onto reaction. All of these graft copolymers were identified with randomly distributed PLA branches, bearing a very high molecular weight ((33-398) × 104) and very high PLA content (57.3-89.3 wt %). Unprecedentedly, with a very small amount of newly designed TPE, the modified PLA blends exhibited a significantly increased elongation at break (up to about 190%) and simultaneously retained the very high stiffness and excellent transparency. The nanometer-scale phase-separated particles with good compatibility and refractive index matching to the PLA matrix were demonstrated to play a crucial role in the excellent performance. The findings suggested that the newly designed iPP-g-PLA copolymers are very economic, promising, and effective modifying agents for developing highly transparent and tough PLA-based sustainable materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA